\Phân tích đa thức thành nhân tử:
$a) x^2-y^2+4y-4$
$b) x^2-9y^2$
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(ab+a+b+1\)
\(=a\left(b+1\right)+\left(b+1\right)\)
\(=\left(b+1\right)\left(a+1\right)\)
c: \(4x^2-12xy+3x-9y\)
\(=4x\left(x-3y\right)+3\left(x-3y\right)\)
\(=\left(x-3y\right)\left(4x+3\right)\)
a) \(=x^2-\left(2y\right)^2=\left(x-2y\right)\left(x+2y\right)\)
b) \(=x^2-\left(3y\right)^2=\left(x-3y\right)\left(x+3y\right)\)
c) \(=\left(2x-1\right)^2-\left(2y\right)^2=\left(2x-1-2y\right)\left(2x-1+2y\right)\)
d) \(=x^2-10xy+\left(5y\right)^2=\left(x-5y\right)^2\)
e) \(=\left(3x\right)^2-6x+1=\left(3x-1\right)^2\)
f) \(=\left(5x\right)^2+20x+4=\left(5x+2\right)^2\)
a) x^2 - 5xy +4y^2= x^2 -xy -4xy+4y^2= (x^2-xy) - (4xy - 4y^2)= x(x-y)-4y(x-y)=(x-y)*(x - 4y)
b) x^2 -y^4+9y -x(9+y-y^3= x^2-y^4 +9y-9x-xy+xy^3= (x^2-xy)-(9x-9y)+(xy^3-y^4)=x(x-y)-9(x-y)+y^3(x-y)=(x-y)*(y^3+x-9)
d) 2u^2+2v^2-5uv=(2u^2-4uv)+(2v^2-uv)=2u(u-2v)+v(2v-u)= 2u(u-2v)-v(u-2v)=(u-2v)*(2u-v)
a. \(x^2-y^2=\left(x-y\right)\left(x+y\right)\)
b. \(x^2-6xy+9y^2-36=\left(x-3y\right)^2-6^2=\left(x-3y-6\right)\left(x-3y+6\right)\)
a: \(x^2-y^2=\left(x-y\right)\left(x+y\right)\)
b: \(x^2-6xy+9y^2-36=\left(x-3y\right)^2-6^2=\left(x-3y-6\right)\left(x-3y+6\right)\)
a,x2-4xy+4y2
=(x-2y2
b,4x4+9y2-12x2y
=(2x2)2+(3y)2-12x2y
(2x2-3y)
\(1,\\ a,=4\left(x-2\right)^2+y\left(x-2\right)=\left(4x-8+y\right)\left(x-2\right)\\ b,=3a^2\left(x-y\right)+ab\left(x-y\right)=a\left(3a+b\right)\left(x-y\right)\\ 2,\\ a,=\left(x-y\right)\left[x\left(x-y\right)^2-y-y^2\right]\\ =\left(x-y\right)\left(x^3-2x^2y+xy^2-y-y^2\right)\\ b,=2ax^2\left(x+3\right)+6a\left(x+3\right)\\ =2a\left(x^2+3\right)\left(x+3\right)\\ 3,\\ a,=xy\left(x-y\right)-3\left(x-y\right)=\left(xy-3\right)\left(x-y\right)\\ b,Sửa:3ax^2+3bx^2+ax+bx+5a+5b\\ =3x^2\left(a+b\right)+x\left(a+b\right)+5\left(a+b\right)\\ =\left(3x^2+x+5\right)\left(a+b\right)\\ 4,\\ A=\left(b+3\right)\left(a-b\right)\\ A=\left(1997+3\right)\left(2003-1997\right)=2000\cdot6=12000\\ 5,\\ a,\Leftrightarrow\left(x-2017\right)\left(8x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\\ b,\Leftrightarrow\left(x-1\right)\left(x^2-16\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4\\x=-4\end{matrix}\right.\)
a) \(=x^2-\left(y^2-4y+4\right)=x^2-\left(y-2\right)^2=\left(x-y+2\right)\left(x+y-2\right)\)
b) \(=\left(x-3y\right)\left(x+3y\right)\)