Tìm x:
x2(x2-7)2=36
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a, Thay m=-1 vào (1) ta có:
\(x^2-2\left(-1+1\right)x+\left(-1\right)^2+7=0\\
\Leftrightarrow x^2+1+7=0\\
\Leftrightarrow x^2+8=0\left(vô.lí\right)\)
Thay m=3 vào (1) ta có:
\(x^2-2\left(3+1\right)x+3^2+7=0\\ \Leftrightarrow x^2-2.4x+9+7=0\\ \Leftrightarrow x^2-8x+16=0\\ \Leftrightarrow\left(x-4\right)^2=0\\ \Leftrightarrow x-4=0\\ \Leftrightarrow x=4\)
b, Thay x=4 vào (1) ta có:
\(4^2-2\left(m+1\right).4+m^2+7=0\\ \Leftrightarrow16-8\left(m+1\right)+m^2+7=0\\ \Leftrightarrow m^2+23-8m-8=0\\ \Leftrightarrow m^2-8m+15=0\\ \Leftrightarrow\left(m^2-3m\right)-\left(5m-15\right)=0\\ \Leftrightarrow m\left(m-3\right)-5\left(m-3\right)=0\\ \Leftrightarrow\left(m-3\right)\left(m-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}m=3\\m=5\end{matrix}\right.\)
c, \(\Delta'=\left[-\left(m+1\right)\right]^2-\left(m^2+7\right)=m^2+2m+1-m^2-7=2m-6\)
Để pt có 2 nghiệm thì \(\Delta'\ge0\Leftrightarrow2m-6\ge0\Leftrightarrow m\ge3\)
Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1x_2=m^2+7\end{matrix}\right.\)
\(x_1^2+x_2^2=0\\ \Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=0\\ \Leftrightarrow\left(2m+2\right)^2-2\left(m^2+7\right)=0\\ \Leftrightarrow4m^2+8m+4-2m^2-14=0\\ \Leftrightarrow2m^2+8m-10=0\\ \Leftrightarrow\left[{}\begin{matrix}m=1\left(ktm\right)\\m=-5\left(ktm\right)\end{matrix}\right.\)
\(x_1-x_2=0\\ \Leftrightarrow\left(x_1-x_2\right)^2=0\\ \Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=0\\ \Leftrightarrow\left(2m+2\right)^2-4\left(m^2+7\right)=0\\ \Leftrightarrow4m^2+8m+4-4m^2-28=0\\ \Leftrightarrow8m=28=0\\ \Leftrightarrow m=\dfrac{7}{2}\left(tm\right)\)
Bài 2:
a,Thay m=-2 vào (1) ta có:
\(x^2-2x-\left(-2\right)^2-4=0\\ \Leftrightarrow x^2-2x-4-4=0\\ \Leftrightarrow x^2-2x-8=0\\ \Leftrightarrow\left[{}\begin{matrix}x=4\\x=-2\end{matrix}\right.\)
b, \(\Delta'=\left(-m\right)^2-\left(-m^2-4\right)\ge0=m^2+m^2+4=2m^2+4>0\)
Suy ra pt luôn có 2 nghiệm phân biệt
Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=-m^2-4\end{matrix}\right.\)
\(x_1^2+x_2^2=20\\ \Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=20\\ \Leftrightarrow2^2-2\left(-m^2-4\right)=20\\ \Leftrightarrow4+2m^2+8-20=0\\ \Leftrightarrow2m^2-8=0\\ \Leftrightarrow m=\pm2\)
\(x_1^3+x_2^3=56\\ \Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=56\\ \Leftrightarrow2^3-3\left(-m^2-4\right).2=56\\ \Leftrightarrow8-6\left(-m^2-4\right)-56\\ =0\\ \Leftrightarrow8+6m^2+24-56=0\\ \Leftrightarrow6m^2-24=0\\ \Leftrightarrow m=\pm2\)
\(x_1-x_2=10\\ \Leftrightarrow\left(x_1-x_2\right)^2=100\\ \Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2-100=0\\ \Leftrightarrow2^2-4\left(-m^2-4\right)-100=0\\ \Leftrightarrow4+4m^2+16-100=0\\ \Leftrightarrow4m^2-80=0\\ \Leftrightarrow m=\pm2\sqrt{5}\)
Bài 3:
b. $B=(x+y)(2x-y)+(xy^4-x^2y^2):(xy^2)$
$=(2x^2-xy+2xy-y^2)+(y^2-x)$
$=2x^2+xy-y^2+y^2-x=2x^2+xy-x$
Bài 4:
a. $25x^3-10x^2+x=x(25x^2-10x+1)=x(5x-1)^2$
b. $x^2-9x+9y-y^2=(x^2-y^2)-(9x-9y)=(x-y)(x+y)-9(x-y)=(x-y)(x+y-9)$
c. $16-x^2-4y^2-4xy=16-(x^2+4y^2+4xy)$
$=4^2-(x+2y)^2=(4-x-2y)(4+x+2y)$
b) \(\Leftrightarrow3x^3+12x-2x^2-8=0\\ \Leftrightarrow\left(3x^3-2x^2\right)+\left(12x-8\right)=0\\ \Leftrightarrow x^2\left(3x-2\right)+4\left(3x-2\right)=0\\ \Leftrightarrow\left(x^2+4\right)\left(3x-2\right)=0\)
Vì \(x^2+4>0\Rightarrow3x-2=0\Rightarrow x=\dfrac{2}{3}\)
c) \(x^2+5x=0\\ \Leftrightarrow x\left(x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
d) \(\Leftrightarrow x^3-27+x\left(4-x^2\right)=36\\ \Leftrightarrow x^3+4x-x^3=63\\ \Leftrightarrow4x=63\\ \Leftrightarrow x=\dfrac{63}{4}\)
b) 3x(x\(^3\) +12x-2x\(^2\)-8=0
3x(x\(^2\)+4)-2(x\(^2\)+4)=0
(x\(^2\)+4)(3x-2)=0
\(\Leftrightarrow\left[{}\begin{matrix}X^2+4=0\\3X-2=0\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x\in Z\\X=\dfrac{2}{3}\end{matrix}\right.\)
a) x\(^2\)+5x=0
x(x+5)=0
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+5=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
c)(x-3)(x\(^2\)+3x+9)+x(x+2)(2-x)=36
x\(^3\)-27+x(x+2)(2-x)=36
4x-27=36
4x=36+27
4x=63
x=\(\dfrac{63}{4}\)
\(PT\Leftrightarrow\left[x\left(x^2-7\right)\right]^2=36\Rightarrow x\left(x^2-7\right)=\pm6\)
+ Với \(x\left(x^2-7\right)=6\Rightarrow x^3-7x-6=0\)
\(\Leftrightarrow\left(x-3\right)\left(x^2+3x+2\right)=0\)
Giải pT tích trên ta được \(x_1=3;x_2=-1;x_3=-2\)
+ Với \(x\left(x^2-7\right)=-6\Leftrightarrow x^3-7x+6=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+2\right)=0\)
Giải PT tích trên ta được \(x_4=-3;x_5=1;x_6=2\)