Tính số cách xếp 5 quyển sách Toán, 4 quyển sách Lý và 3 quyển sách Hóa lên một giá sách theo từng môn.
A. 5!4!3!
B. 15!+4!+3!
C. 5!4!3!3!
D. 5.4.3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C.
Xếp vị trí từng môn: 3!=6
Xếp vị trí trong tập toán: 5!
Xếp vị trí trong tập lý: 4!
Xếp vị trí trong tập hóa: 3!
=>Có 6.5!.4!.3!
Có 3 môn học nên có 3! Cách xếp sách theo môn Ứng với mỗi cách xếp theo môn có 5!cách xếp toán,4! Cách xếp hóa và 3! Cách xếp sách lí. Vậy số cách xếp sách là : 3!5!4!3!cách
Chọn C
Xếp 5 quyển Toán cạnh nhau: \(5!\) cách
Xếp 5 quyển Lý cạnh nhau: \(4!\) cách
Xếp 3 quyển Văn cạnh nhau: \(3!\) cách
Hoán vị 3 loại Toán-Lý-Văn: \(3!\) cách
Tổng cộng có: \(5!.4!.3!.3!=...\) cách xếp thỏa mãn
Bước 1: Do đề bài cho 4 quyển sách Toán đứng cạnh nhau nên ta sẽ coi như “buộc” các quyển sách Toán lại với nhau thì số cách xếp cho “buộc” Toán này là 4! cách.
Bước 2: Tương tự ta cũng “buộc” 3 quyển sách Lý lại với nhau, thì số cách xếp cho “buộc” Lý này là 3! cách.
Bước 3: Lúc này ta sẽ đi xếp vị trí cho 7 phần tử trong đó có:
+ 1 “buộc” Toán.
+ 1 “buộc” Lý.
+ 5 quyển Hóa.
Thì sẽ có 7! cách xếp.
Vậy theo quy tắc nhân ta có 7!4!3!=725760 cách xếp.
Chọn C.
Chọn D
Tổng có 3 + 4 + 5 = 12 quyển sách được sắp xếp lên một giá sách có 3 ngăn (có 2 vách ngăn). Vì vậy, ta coi 2 vách ngăn này như 2 quyển sách giống nhau. Vậy số phần tử không gian mẫu
Gọi A là biến cố : “ Sắp xếp các 12 quyển sách lên giá sao cho không có bất kỳ hai quyển sách toán nào đứng cạnh nhau”.
+) Xếp 9 quyển sách ( lý và hóa) cùng 2 vách ngăn có 11 ! 2 ! cách
+) Lúc này, có 12 “khoảng trống” ( do 9 quyển sách ( lý và hóa) cùng 2 vách ngăn tạo ra) để xếp 3 quyển sách toán vào sao cho mỗi quyển vào một “khoảng trống” có A 12 3 cách.
Vậy có tất cả 11 ! 2 ! . A 12 3 cách. Suy ra
Vậy xác suất để không có bất kỳ hai quyển sách toán nào đứng cạnh nhau là:
3 nha bạn. Mà bạn có phải là fan của Fairy Tall k,nếu đúng thì kb nha