Cho tập S = 1 ; 2 ; 3 ; . . . . 19 ; 20 gồm 20 số tự nhiên từ 1 đến 20. Lẫy ngẫu nhiên ba số thuộc S. Xác suất để ba số lấy được lập thành một cấp số cộng là
A. 7/38
B. 5/38
C. 3/38
D. 1/114
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án: A
S chỉ có 1 tập con
⇔ S = ∅ ⇔ (m - 1; m + 1) ⊂ (-∞; 1].
⇔ m + 1 ≤ 1 ⇔ m ≤ 0
Chọn B.
Phương pháp:
+ Biến đổi phương trình thứ nhất của hệ để đưa về dạng
+ Thay vào phương trình thứ hai ta được phương trình ẩn y. Lập luận phương trình này có nghiệm duy nhất
thì hệ ban đầu sẽ có nghiệm duy nhất.
+ Sử dụng bất đẳng thức Cô-si để thử lại m.
Cách giải:
Vậy phương trình (***) có nghiệm duy nhất y = 0.
Kết luận : Với m = 0 thì hệ đã cho có nghiệm duy nhất nên tập S có một phần tử.
Chú ý :
Các em có thể làm bước thử lại như sau :
Thay m = 0 vào (*) ta được
x + 8 chia hết cho x - 1
=> x - 1 + 9 chia hết cho x - 1
Có x - 1 chia hết cho x - 1
Vì x thuộc Z => x - 1 thuộc Z
=> 9 chia hết cho x - 1
=> x - 1 thuộc Ư(9)
=> x - 1 thuộc {1; -1; 3; -3; 9; -9}
=> x thuộc {2; 0; 4; -2; 10; -8}
Để \(x=\frac{a-20}{-3}\) ( a ∈ N* ) nhận giá trị dương
=> a - 20 nhận giá trị âm
=> a nhỏ hơn 20
a) S = { a ∈ N* | a < 20 }
\(S=\left\{...;17;18;19\right\}\)
b) ( Không hiểu đề , thông cảm , bạn làm nốt nhé ! )
Số phần tử của không gian mẫu là: C 20 3 = 1140
Ba số a;b;c theo thứ tự lập thành CSC khi và chỉ khi a + c 2 = b ⇒ a + c = 2 b là số chẵn. Do đó a;c cùng chẵn hoặc cùng lẻ.
Như vậy, để ba số lấy được lập thành một cấp số cộng (giả sử 3 số đó là a , b , c a < b < c ) thì ta chọn trước 2 số a và c cùng chắn hoặc cùng lẻ.
Ta có
.
Khi đó, luôn tồn tại duy nhất 1 số b thỏa mãn yêu cầu đề bài.
Số cách chọn bộ số a,c như trên là: 2 C 10 2 = 90
Xác suất cần tìm là: 90/1140=3/38,
Chọn C.