Có 6 viên bi xanh được đánh số từ 1 đến 6; 5 viên bi đỏ được đánh số từ 1 đến 5; 4 viên bi vàng được đánh số từ 1 đến 4. Hỏi có bao nhiêu cách lấy ra ba viên bi vừa khác màu, vừa khác số? A. 64 B. 120 C. 40 D....
Đọc tiếp
Có 6 viên bi xanh được đánh số từ 1 đến 6; 5 viên bi đỏ được đánh số từ 1 đến 5; 4 viên bi vàng được đánh số từ 1 đến 4. Hỏi có bao nhiêu cách lấy ra ba viên bi vừa khác màu, vừa khác số?
A. 64
B. 120
C. 40
D. 20
Đáp án A
+ Sắp xếp các viên bi thành ba hàng lần lượt là hàng 1 gồm 4 viên vi vàng đánh số từ 1 đến 4; hàng 2 gồm các 5 viên bi đỏ đánh số từ 1 đến 5, hàng 3 gồm 6 viên bi xanh đánh số từ 1 đến 6 (đóng thẳng cột như hình vẽ).
+ Việc lựa chọn tiến hành theo ba bước sau:
Bước 1: Chọn 1 viên bi vàng ở hàng thứ nhất: có 4 cách thực hiện.
Sau đó ta xóa đi cột chứa viên bi vàng vừa được chọn.
Bước 2: Chọn 1 viên bi đỏ từ hàng thứ hai từ 4 viên bi đỏ còn lại (1 viên bi đỏ bị loại bỏ sau bước thứ nhất): có 4 cách thực hiện.
Sau đó ta tiếp tục xóa cột chứa viên bi đỏ vừa được chọn.
Bước 3: Chọn 1 viên bi xanh từ 4 viên bi xanh còn lại ở hàng thứ ba: có 4 cách chọn.
Vậy theo quy tắc nhân, có: 4.4.4 = 64 cách chọn thỏa mãn.