K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2018

21 tháng 7 2019

\(\left(m-1\right)\left(-2\right)+2m-3=0\Leftrightarrow2-2m+2m-3=0\Leftrightarrow-1=0\left(\text{voli}\right)\)

22 tháng 7 2019

(m−1)(−2)+2m−3=0⇔2−2m+2m−3=0⇔−1=0(voli)

AH
Akai Haruma
Giáo viên
20 tháng 12 2017

Lời giải:

Theo ý c, số dư khi chia đa thức $f(x)$ cho $(x-2)(x-3)$ sẽ không vượt quá bậc 2. Do đó số dư có dạng \(ax+b\)

Đặt \(f(x)=(x-2)(x-3)(x^2-1)+ax+b\) (*)

Theo định lý Bezout về số dư đa thức, số dư của $f(x)$ khi chia cho $x-2$ và $x-3$ là \(f(2); f(3)\)

Do đó: \(f(2)=5; f(3)=7\)

Thay vào (*) ta có:

\(\left\{\begin{matrix} f(2)=0+2a+b=5\\ f(3)=0+3a+b=7\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a=2\\ b=1\end{matrix}\right.\)

Vậy \(f(x)=(x-2)(x-3)(x^2-1)+2x+1\)

\(\Leftrightarrow f(x)=x^4-5x^3+5x^2+7x-5\)

16 tháng 12 2018

Để \(f\left(x\right)=\left(ax+b\right)^2\)

\(\Leftrightarrow x^2-\left(2m+1\right)x+m^2+1=\left(ax+b\right)^2\)

\(\Leftrightarrow x^2-\left(2m+1\right)x+\left(m^2+1\right)=a^2x^2+2abx+b^2\)

Đồng nhất hệ số ta được :

\(\left\{{}\begin{matrix}a^2=1\\2ab=-\left(2m+1\right)\\b^2=m^2+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\pm1\\2ab=-2m-1\\b^2=m^2+1\end{matrix}\right.\)

Với \(a=1\Rightarrow\left\{{}\begin{matrix}2b=-2m-1\\b^2=m^2+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{3}{4}\\b=-\dfrac{5}{4}\end{matrix}\right.\)

Với \(a=-1\Rightarrow\left\{{}\begin{matrix}-2b=-2m-1\\b^2=m^2+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{3}{4}\\b=\dfrac{5}{4}\end{matrix}\right.\)

Vậy \(m=\dfrac{3}{4}\)

30 tháng 6 2019

Bài 1:

Từ P(x) = 3x2+8x-4 = -4

=> 3x2+8x = 0

x(3x+8) = 0

=> x = 0 3x+8 = 0

=> x = 0 3x = 8

=> x = 8/3

Bài 2 :

Ta có x = -1 là nghiệm của đa thức f(x) = 2x2-x+m

=> f(-1) = 2(-1)2-(-1)+m = 0

=> 2+1+m = 0

=> 3+m = 0

m = 0-3

m = -3

24 tháng 7 2018

Bài 2 (sửa lại đề)

Cho hai đa thức:

P(x)=x2+2mx+m2

Q(x)=x2+(2m+1)+m2
Tìm m để P(x)=Q(x)

22 tháng 3 2017

Câu a thì dài, câu b thì ngắn. Xin giải câu b trước để đi ngủ

b) Giải:

\(f\left(x_1.x_2\right)=f\left(x_1\right).f\left(x_2\right)\) nên:

\(f\left(4\right)=f\left(2.2\right)=f\left(2\right).f\left(2\right)=10.10=100\)

\(f\left(16\right)=f\left(4.4\right)=f\left(4\right).f\left(4\right)=100.100=10000\)

\(f\left(32\right)=f\left(16.2\right)=f\left(16\right).f\left(2\right)=10000.10=100000\)

Vậy \(f\left(32\right)=100000\)

21 tháng 12 2017

a.

f(2)-3f(2+1)=2*22

f(2) -3f*3=2*4

f(2)-9f=8

f(2)=8+9f

b.

f(-5)-3f(-5+1)=2*(-5)2

f(-5)-3f(-4)=2*25

f(-5)-(-12)f=50

f(-5)+12f=50

f(-5)=50-12f

c.

f(-2)-3f(-2+1)=2*(-2)2

f(-2)-3f(-1)=2*4

f(-2)-(-3)f=8

f(-2)+3f=8

f(-2)=8-3f

Mình vẫn chưa biết đúng hay sai nữa nha

22 tháng 12 2017

bạn phải tính ra số cụ thể cơ

14 tháng 3 2017

Vì f(x) chia x+2 dư 10 nên f(x) -10 chia hết cho x+2

Theo Bezout ta có :

f(-2) - 10 = 0

=> f(-2) = 0

Cmtt f(2) = 22

Lại có : f(x) = -5x(x2 - 4) + ax+b (*)

Thay x = -2 vào (*) ta được:

f(-2) = -2a+b = 10

Thay x = 2 vào (*) ta được :

f(2) = 2a+b = 22

Giải bất phương trình \(\left\{{}\begin{matrix}-2a+b=10\\2a+b=22\end{matrix}\right.\)

Suy ra a= 3 ; b= 16

Vậy f(x) = -5x(x2-4)+3x+16