K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2021

TL:

D)Đồng biến trên khoảng (-; +∞)

_HT_

10 tháng 11 2021

Hàm số: \(f\left(x\right)=\frac{x^3}{3}-\frac{x^2}{2}-6x+\frac{3}{4}\)

A) Đồng biến trên khoảng (-2; 3)

B) Nghịch biến trên khoảng (-2; 3)

C) Nghịch biến trên khoảng (-∞; -2)

D) Đồng biến trên khoảng (-; +∞)

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

Trục đối xứng của hàm số là: \(x = \frac{5}{2}.\)

Vì \(a = 1 > 0\) nên hàm số đồng biến trên khoảng \(\left( {\frac{5}{2}; + \infty } \right)\) và nghịch biến trên khoảng \(\left( { - \infty ;\frac{5}{2}} \right).\)

Chọn C.

7 tháng 10 2018

Đáp án là D

30 tháng 4 2023

B. Hàm số nghịch biến trên khoảng \(\left(-\infty;-1\right)\)

2 tháng 10 2017

Đáp án D

Khẳng định số II sai.

Dựa vào bảng biến thiên ta thấy hàm số đồng biến trên khoảng  - ∞ ; - 2

9 tháng 12 2017

Đáp án D

Khẳng định số II sai. Dựa vào bảng biến thiên ta thấy hàm số đồng biến trên khoảng  ( − ∞ ; − 2 )

19 tháng 5 2017

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) Từ đồ thị ta thấy hàm số xác định trên [-3;7]

+) Trên khoảng (-3; 1): đồ thị có dạng đi lên từ trái sang phải nên hàm số này đồng biến trên khoảng (-3; 1).

+) Trên khoảng (1; 3): đồ thị có dạng đi xuống từ trái sang phải nên hàm số này nghịch biến trên khoảng (1; 3).

+) Trên khoảng (3; 7): đồ thị có dạng đi lên từ trái sang phải nên hàm số này đồng biến trên khoảng (3; 7).

b) Xét hàm số \(y = 5{x^2}\) trên khoảng (2; 5).

Lấy \({x_1},{x_2} \in (2;5)\) là hai số tùy ý sao cho \({x_1} < {x_2}\).

Do \({x_1},{x_2} \in (2;5)\) và \({x_1} < {x_2}\) nên \(0 < {x_1} < {x_2}\), suy ra \({x_1}^2 < {x_2}^2\) hay \(5{x_1}^2 < 5{x_2}^2\)

Từ đây suy ra \(f({x_1}) < f({x_2})\)

Vậy hàm số đồng biến (tăng) trên khoảng (2; 5).

16 tháng 12 2023

thầy ơi thầy có thể giải giùm e đc ko ạ

AH
Akai Haruma
Giáo viên
18 tháng 3 2021

Lời giải:

$y'=\frac{2x}{\sqrt{2x^2+1}}$

$y'>0\Leftrightarrow 2x>0\Leftrightarrow x>0$ hay $x\in (0;+\infty)$

$y'< 0\Leftrightarrow 2x< 0\Leftrightarrow x\in (-\infty;0)$

Vậy hàm số đồng biến trên $(0;+\infty)$ và nghịch biến trên $(-\infty; 0)$

Đáp án A.

16 tháng 12 2023

cô ơi cô có thể giải giùm e đc ko ạ

8 tháng 10 2018

Đáp án: A.

13 tháng 11 2023

loading...  loading...  loading...