Cho biểu thức : M = 1/5+(1/5)^2+(1/5)^3+.....+(1/5)^49+(1/5)^50
CMR M<1/4
làm đi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\frac{1}{5}+\left(\frac{1}{5}\right)^2+\left(\frac{1}{5}\right)^3+...+\left(\frac{1}{5}\right)^{49}+\left(\frac{1}{5}\right)^{50}\)
\(5M=1+\frac{1}{5}+\left(\frac{1}{5}\right)^2+...+\left(\frac{1}{5}\right)^{48}+\left(\frac{1}{5}\right)^{49}\)
5M - M = \(1-\left(\frac{1}{5}\right)^{50}\)hay 4M = \(1-\left(\frac{1}{5}\right)^{50}\)< 1
\(\Rightarrow M=\frac{1-\left(\frac{1}{5}\right)^{50}}{4}< \frac{1}{4}\)
\(M=\frac{1}{5}+\left(\frac{1}{5}\right)^2+...+\left(\frac{1}{5}\right)^{50}\)(1)
\(\Rightarrow5M=1+\frac{1}{5}+...+\left(\frac{1}{5}\right)^{49}\)(2)
Lấy (2)-(1) ta có
\(\Rightarrow4M=1-\left(\frac{1}{5}\right)^{50}\)
\(\Rightarrow M=\frac{1-\frac{1}{5^{50}}}{4}\)
Do \(1-\frac{1}{5^{50}}< 1\)
\(\Rightarrow M< \frac{1}{4}\)
M = \(\frac{1}{5}+\left(\frac{1}{5}\right)^2+\left(\frac{1}{5}\right)^3+...+\left(\frac{1}{5}\right)^{^{^{ }}50}\)
=> 5M = 1 + \(\frac{1}{5}+\left(\frac{1}{5}\right)^2+...+\left(\frac{1}{5}\right)^{49}\)
=> 5M - M = ( 1 + \(\frac{1}{5}+\left(\frac{1}{5}\right)^2+...+\left(\frac{1}{5}\right)^{49}\)) - ( \(\frac{1}{5}+\left(\frac{1}{5}\right)^2+\left(\frac{1}{5}\right)^3+...+\left(\frac{1}{5}\right)^{^{^{ }}50}\))
4M = 1 - \(\left(\frac{1}{5}\right)^{50}\)
=> M = \(\frac{1-\left(\frac{1}{5}\right)^{50}}{4}\)< \(\frac{1}{4}\)
Ta có : 5M = \(1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2013}}\)
Lấy 5M trừ M ta có :
\(5M-M=\left(1+\frac{1}{5}+\frac{1}{5^2}+..+\frac{1}{5^{2013}}\right)-\left(\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+..+\frac{1}{5^{2014}}\right)\)
\(4M=1-\frac{1}{5^{2014}}\)
\(M=\left(1-\frac{1}{5^{2014}}\right):4=\frac{1}{4}-\frac{1}{5^{2014}.4}< \frac{1}{3}\)
\(\Rightarrow M< \frac{1}{3}\left(\text{ĐPCM}\right)\)
\(M=\frac{1}{5}+\left(\frac{1}{5}\right)^2+...+\left(\frac{1}{5}\right)^{50}\)
\(M=\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{50}}\)
\(5M=5\left(\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{50}}\right)\)
\(5M=1+\frac{1}{5}+...+\frac{1}{5^{49}}\)
\(5M-M=\left(1+\frac{1}{5}+...+\frac{1}{5^{49}}\right)-\left(\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{50}}\right)\)
\(4M=1-\frac{1}{5^{50}}\)
\(M=\frac{1-\frac{1}{5^{50}}}{4}< \frac{1}{4}=0,25\)
Đpcm
\(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-...+\frac{1}{99}-\frac{1}{100}\)
Ta có A =1/1.2+1/3.4+1/5.6+...+1/99.100
=(1/1.2+1/3.4)+(1/5.6+...+1/99.100)
=7/12+(1/5.6+...+1/99.100)>7/12(1)
A=1-1/2+1/3-1/4+1/5-1/6+...+1/99-1/100
=(1+1/3+1/5+...+1/99)-(1/2+1/4+..+1/100)
=(1+1/2+1/3+1/4+..+1/99+1/100)-2(1/2+1/4+....+1/100) ( Cộng thêm cả 2 vế với 1/2+1/4+..+1/100)
=(1+1/2+1/3+..+1/100)-(1+1/2+..+1/50)
=1/51+1/52+..+1/100
Dãy số trên có 50 số hang 50 chia hết cho 10 nên ta nhóm 10 số vào 1 nhóm
A=(1/51+1/52+..+1/60)+(1/61+1/62+..+1/70)+(1/71+1/72+..+1/80)+(1/81+..+1/90)+(1/91+..+1/100)
<1/50.10+1/60.10+1/70.10+1/80.10+1/90.10=1/5+1/6+1/7+1/8+1/9<1/5+1/6+1/7.3=167/210<175/210=5/6
=>A<5/6(2)
từ 1 và 2 => đpcm
=>5M=1+1/5+1/5^2+...+1/5^48+1/5^49
=>5M-M=(1+1/5+1/5^2+..+1/5^48+1/5^49)-(1/5+1/5^2+1/5^3+...+1/5^49+1/5^50)
=>4M=1-1/5^50
=>M=(1-1/5^50)/4
mà 1-1/5^50<1
=>M<1/4(đpcm)
tich nha ban