Một vật dao động điều hòa với phương trình x = A cos ( ω t + φ ) (cm). Trong 1/60 s đầu tiên, vật đi từ vị trí có li độ x = + A đến vị trí có li độ x = + ( A √ 3 ) / 2 theo chiều âm. Chu kì dao động của vật là:
A. 0,2 s
B. 0,4 s
C. 1 s
D. 0,5 s
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ Biểu diễn dao động điều hoà bằng véc tơ quay.
Trong 1/60s đầu tiên ứng với véc tơ quay từ M đến N, góc quay dễ dàng tìm được là 600.
Thời gian \(t=\dfrac{60}{360}T=\dfrac{1}{60}\Rightarrow T = 0,1s\)
\(\Rightarrow \omega = 2\pi/T=20\pi (rad/s)\)
Áp dụng công thức độc lập: \(A^2=x^2+\dfrac{v^2}{\omega^2}\Rightarrow A^2=2^2+\dfrac{(40\pi\sqrt 3)^2}{20\pi}\)
\(\Rightarrow A = 4cm\)
Pha ban đầu ứng với véc tơ quay tại M \(\Rightarrow \varphi = -\dfrac{\pi}{2} (rad/s)\)
Vậy: \(x=4\cos(20\pi t -\dfrac{\pi}{2}) (cm)\)
Vật đi từ li độ x =0 theo chiều dương đến li độ x = \(A\sqrt{3}/2\) như hình vẽ.
Cung quay được tương ứng có màu đỏ và bằng \(\phi = 90- \varphi = 60^0.\) (vì \(\cos\varphi = \frac{A\sqrt{3}/2}{A}= \frac{\sqrt{3}}{2} \Rightarrow \varphi = 30^0. \))
Thời gian quay là \(t = \frac{\pi/3}{\omega} = \frac{1}{60} \Rightarrow \omega = \pi/3:\frac{1}{60}=20\pi. \)(rad/s).
ADCT mối quan hệ giữa li độ, vận tốc tại li độ đó và biên độ
\(A^2 = x^2 + \frac{v^2}{\omega}=2^2+\frac{40^2\pi^2\sqrt{3}^2}{20^2\pi^2} = 16.\)
=> A = 4cm.
Do vật đi từ x = 0 theo chiều dương nên hình vào hình tròn va thấy \(\varphi = -\frac{\pi}{2}.\)
=> \(x = 4 \cos (20\pi t - \frac{\pi}{2}).\)
Đáp án B
Vật đi qua vị trí có li độ là x = -2 cm và đang hướng về phía vị trí biên gần nhất nên: v = -10 cm/s
Biên độ dao động của vật: A 2 = x 2 + v 2 ω 2 = ( - 2 ) 2 + ( - 10 ) 2 5 2 ⇒ A = 2 2 cm
Tại thời điểm ban đầu:
Phương trình dao động của vật là: x = 2 2 cos ( 5 t + 3 π 4 )
Đáp án B
Vật đi qua vị trí có li độ là x = − 2 cm và đang hướng về phía vị trí biên gần nhất nên: v = − 10 cm / s
Biên độ dao động của vật:
A 2 = x 2 + v 2 ω 2 = − 2 2 + − 10 2 5 2 = 8 ⇒ A = 2 2 cm
Tại thời điểm ban đầu:
t = 0 ⇒ x = 2 2 cosφ = − 2 v < 0 ⇒ cosφ = − 2 2 sinφ > 0 ⇒ φ = 3 π 4
Phương trình dao động của vật là: x = 2 2 cos 5 t + 3 π 4 cm
Mỗi câu hỏi bạn nên hỏi 1 bài thôi để tiện trao đổi nhé.
Biểu diễn dao động bằng véc tơ quay ta có:
Để vật qua li độ 1 cm theo chiều dương thì véc tơ quay qua N.
Trong giây đầu tiên, véc tơ quay đã quay 1 góc là: \(5\pi\), ứng với 2,5 vòng quay.
Xuất phát từ M ta thấy véc tơ quay quay đc 2,5 vòng thì nó qua N 3 lần do vậy trong giây đầu tiên, vật qua li độ 1cm theo chiều dương 3 lần.
Bạn xem thêm lí thuyết phần này ở đây nhé
Phương pháp véc tơ quay và ứng dụng | Học trực tuyến
Bài 1 :
T = 2π / ω = 0.4 s
Vật thực hiện được 2 chu kì và chuyển động thêm trong 0.2 s (T/2 ) nữa
1 chu kì vật qua vị trí có li độ x=2cm theo chiều dương được "1 " lần
⇒ 2 ________________________________________... lần
phần lẻ 0.2s (T/2) , (góc quét là π ) (tức là chất điểm CĐ tròn đều đến vị trí ban đầu và góc bán kính quét thêm π (rad) nữa, vị trí lúc nầy:
x = 1 + 2cos(-π/2 + π ) = 1, (vận tốc dương) vật qua vị trí có li độ x=2cm theo chiều dương thêm 1 lần nữa
(từ VT ban đầu (vị tri +1 cm ) –> biên dương , về vị trí có ly độ x = +1 cm
do đó trong giây đầu tiên kể từ lúc t=0 vật qua vị trí có li độ x=2cm theo chiều dương được 3 lần
Chọn A
Ta có trong thời gian Δt thì vật đi được 1 góc