Tính
-1/3 +1/3^2 -1/3^3 +...+1/3^50 +1/3^51
các nhà toán học ơi giúp tôi với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1.\left(\frac{1}{1}-\frac{1}{100}\right)\)
\(=1.\frac{99}{100}\)
\(=\frac{99}{100}\)
=> 5 - [ 4 - ( 1 + 2x ) ] = -6
=> 4 - 1 - 2x = 11
=> 2x = 3 - 11 = -8
=> x = -4
xin lỗi các bạn cái chủ đề mình vội nên chưa chọn chủ đề mong các bạn thông cảm SORRY
program chia;
uses crt;
var n,i:integer;
s:real;
begin
clrscr;
s:=0;
for i:=2 to 50 do s:=s+1/i;
writeln('Tong la ',s:1:2);
readln;
end.
Xét nhà toán học A bất kì nào đó, ông viết thư cho 16 nhà toán học còn lại để trao đổi về ba vấn đề. Theo nguyên lý Đi-rich-lê:ông phải trao đổi một vấn đề nào đó ít nhất với 6 người.Gọi vấn đề đó là vấn đề 1.
Có một nhóm 6 người cùng trao đổi vấn đề 1 với giáo sư A. Nếu trông số họ có 2 người cũng trao đổi về vấn đề 1 thì bài toán được giải quyết.
Nếu không, 6 người đó chỉ trao đổi về hai vấn đề còn lại. Xét nhà toán học B trong số họ. Ông trao đổi với 5 người còn lại trong nhóm về hai vấn đề. Theo nguyên lí Đi-rích-lê: phải có một vấn đề ông trao đổi với ít nhất 3 người bạn.Gọi vấn đề đó là 2. Ta có nhóm 3 người cùng trao đổi với nhà toán học B về vấn đề 2, và không trao đổi với nhau về vấn đề 1.
Nếu trong họ có 2 người trao đổi với nhau vấn đề 2. Bài toán được giải quyết.
Nếu không 3 người họ chỉ trao đổi với nhau về vấn đề 3
Xét nhà toán học A bất kì nào đó, ông viết thư cho 16 nhà toán học còn lại để trao đổi về ba vấn đề. Theo nguyên lý Đi-rich-lê:ông phải trao đổi một vấn đề nào đó ít nhất với 6 người.Gọi vấn đề đó là vấn đề 1.
Có một nhóm 6 người cùng trao đổi vấn đề 1 với giáo sư A. Nếu trông số họ có 2 người cũng trao đổi về vấn đề 1 thì bài toán được giải quyết.
Nếu không, 6 người đó chỉ trao đổi về hai vấn đề còn lại. Xét nhà toán học B trong số họ. Ông trao đổi với 5 người còn lại trong nhóm về hai vấn đề. Theo nguyên lí Đi-rích-lê: phải có một vấn đề ông trao đổi với ít nhất 3 người bạn.Gọi vấn đề đó là 2. Ta có nhóm 3 người cùng trao đổi với nhà toán học B về vấn đề 2, và không trao đổi với nhau về vấn đề 1.
Nếu trong họ có 2 người trao đổi với nhau vấn đề 2. Bài toán được giải quyết.
Nếu không 3 người họ chỉ trao đổi với nhau về vấn đề 3
\(\frac{4}{3}-\left(x-\frac{1}{5}\right)=\left|\frac{-3}{10}+\frac{1}{2}\right|-\frac{1}{6}\)
\(\frac{4}{3}-\left(x-\frac{1}{5}\right)=\frac{1}{5}-\frac{1}{6}\)
\(\frac{4}{3}-\left(x-\frac{1}{5}\right)=\frac{1}{30}\)
\(x-\frac{1}{5}=\frac{4}{3}-\frac{1}{30}\)
\(x-\frac{1}{5}=\frac{13}{10}\)
\(x=\frac{13}{10}+\frac{1}{5}\)
\(x=\frac{3}{2}\)
Bài này mình không tính nhanh được, còn nếu tính bình thường thì:
Chắc bạn đã biết cách tính tổng của dãy số cách đều, ta có: \(1+2+3+...+n=\frac{n\left(n+1\right)}{2}\)
Do đó tổng cần tìm của bạn là:
\(S=\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+4+...+50}\)
\(S=\frac{1}{\frac{2\cdot3}{2}}+\frac{1}{\frac{3\cdot4}{2}}+\frac{1}{\frac{4\cdot5}{2}}+...+\frac{1}{\frac{50\cdot51}{2}}=\frac{2}{2\cdot3}+\frac{2}{3\cdot4}+\frac{2}{4\cdot5}+...+\frac{2}{50\cdot51}\)
Vậy, \(\frac{1}{2}S=\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{50\cdot51}\)
\(\frac{1}{2}S=\frac{3-2}{2\cdot3}+\frac{4-3}{3\cdot4}+\frac{5-4}{4\cdot5}+...+\frac{51-50}{50\cdot51}\)
\(\frac{1}{2}S=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{50}-\frac{1}{51}=\frac{1}{2}-\frac{1}{51}=\frac{51-2}{2\cdot51}=\frac{49}{2\cdot51}\)
Vậy \(S=\frac{49}{51}\)
Bài này chắc không phải lớp 4 nhé bạn!