Xác định vị trí tương đối giữa 2 đường tròn (C1): x2+ y2= 4 và (C2): (x+ 10) 2+ (y-16)2= 1.
A.Cắt nhau.
B.Không cắt nhau.
C.Tiếp xúc ngoài
D.Tiếp xúc trong.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đường tròn (C1): x2+ y2 – 4= 0 có tâm O(0; 0) bán kính R= 2;
Đường tròn (C2) ( x -8) 2+ (y- 6)2= 4 có tâm I( 8; 6) bán kính R= 2.
Mà OI = 8 2 + 6 2 = 10
Ta thấy: OI> 2+2 nên 2 đường tròn đã cho không cắt nhau.
Chọn A.
Ta có: (C1): x2+ y2 – 4 = 0 có tâm O (0; 0) và bán kính R= 2;
Dường tròn (C2): (x-3)2+ (y-4) 2= 25 có tâm I( 3;4) và R= 5 nên OI= 5
Ta thấy: 5-2 < OI< 5+ 2
nên chúng cắt nhau.
Chọn B.
Đáp án A
- Từ giả thiết : đường tròn (C1) tâm I(0;0); R = 13 đường tròn (C2) tâm J( 6;0) và R’= 5
- Gọi đường thẳng d qua A có véc tơ chỉ phương:
- d cắt (C1) tại A,B:
Tương tự d cắt (C2) tại A; C thì tọa độ của A; C là nghiệm của hệ :
- Nếu 2 dây cung bằng nhau thì A là trung điểm của A; C .Từ đó ta có phương trình :
Vậy có 2 đường thẳng: d: x-2 = 0 và d’: 2x -3y + 5= 0.
Đường tròn (C1) có tâm và bán kính: I1=(0;0), và R1= 2; (C2) có tâm I2 (-10; 16) và bán kính R2= 1; khoảng cách giữa hai tâm .
Vậy 2 đường tròn đã cho không có điểm chung.
Chọn B.