Cho khối chóp S.ABC có đáy ABC là tam giác cân tại A với BC = 2a, B A C ^ = 120 0 , biết SA ⊥ (ABC) và mặt (SBC) hợp với đáy một góc 45 0 . Tính thể tích khối chóp S.ABC
A . a 3 3
B . a 3 9
C . a 3 2
D . a 3 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Gọi M là trung điểm của BC . Vì Δ A B C cân tại A nên A M ⊥ B C ,
Ta có A M ⊥ B C S M ⊥ B C S B C ∩ A B C = B C ⇒ Góc giữa S B C và A B C là góc Vì góc S A M = 90 0
Có B M = a , góc B A M = 60 0 nên
sin B A M = B M A B ⇒ A B = 2 a 3 ⇒ S Δ A B C = 1 2 A B . A C . sin 120 0 = a 2 3 3
tan B A M = B M A M ⇒ A M = a 3 ⇒ tan S M A = S A A M ⇒ S A = a 3
V S . A B C D = 1 3 . a 3 . a 2 3 3 = a 3 9
Đáp án B
Gọi M là trung điểm của BC . Vì Δ A B C cân tại A nên A M ⊥ B C ,
Ta có A M ⊥ B C S M ⊥ B C S B C ∩ A B C = B C
->Góc giữa S B C và A B C là góc S M A Vì góc S A M = 90 0
Có B M = a , góc B A M = 60 0 nên
sin B A M = B M A B ⇒ A B = 2 a 3 ⇒ S Δ A B C = 1 2 A B . A C . sin 120 0 = a 2 3 3
tan B A M = B M A M ⇒ A M = a 3 ⇒ tan S M A = S A A M ⇒ S A = a 3
V S . A B C D = 1 3 . a 3 . a 2 3 3 = a 3 9
Đáp án là D
Gọi H là trung điểm của BC, ta có: AH ⊥ BC
Do SA ⊥ (ABC)
Ta có:
Xét tam giác vuông SAH:
Đáp án B.
Dựng tam giác đều IAB (I và C cùng phía bờ AB).
Ta có:
Qua I dựng đường thẳng song song với SA, cắt đường trung trực của SA tại O thì O là tâm mặt cầu ngoại tiếp hình chóp.
Gọi M là trung điểm của SA.
Ta có:
Dựng tam giác đều IAB (I và C cùng phía bờ AB). Ta có ∠ I B C = 120 ° - 60 ° = 60 ° và IB=BC nên DIBC đều, IA=IB=IC=a
Qua I dựng đường thẳng song song với SA, cắt đường trung trực của SA tại O thì O là tâm mặt cầu ngoại tiếp hình chóp.
Gọi M là trung điểm của SA.
Đáp án B
Gọi M là trung điểm của BC. Vì ∆ ABC cân tại A nên AM ⊥ BC,
Ta có
=> Góc giữa (SBC) và (ABC) là góc SMA. Vì góc SAM = 90 0
Có BM = a, góc BAM = 60 0 nên