Cho cấp số nhân ( u n ) có số hạng đầu u 1 = 2 và công bội q = 3 . Số hạng thứ 5 bằng
A. 96
B. 48
C. 486
D. 162
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo giả thiết ta có :
\(u_1+u_2=u_1+\frac{1}{4}\left(u_1\right)=24\)
\(\Rightarrow u_1+\frac{1}{4}u_1^2-24=0\)
\(\Leftrightarrow u_1=-12\) V \(u_1=8\)
Vậy có 2 cấp số nhân tương ứng là : 8,16,32,128 hoặc -12,36,-108,-972
Đáp án C
Em có: S = 1. q n − 1 q − 1 = q n − 1 q − 1 .
Vì cấp số nhân mới tạo thành bằng cách thay đổi mỗi số hạng của cấp số nhân ban đầu thành nghịch đảo của nó nên cấp số nhân mới sẽ có công bội là 1 q .
Gọi S' là tổng mới của cấp số nhân mới.
Em có: S ' = 1 q n − 1 1 q − 1 = 1 − q n q n . 1 − q q = 1 − q n 1 − q . 1 q n − 1 = S q n − 1 .
Vậy tổng của cấp số nhân mới là: S q n − 1 .
a) \({u_2} = {u_1}.q\)
\({u_3} = {u_2}.q = {u_1}.{q^2}\)
\({u_4} = {u_3}.q = {u_1}.{q^3}\)
\({u_5} = {u_4}.q = {u_1}.{q^4}\)
b) Từ a suy ra: \({u_n} = {u_1} \times {q^{n - 1}}\).
Đáp án B
Hướng dẫn giải.
Ta có u n = u 1 . q n - 1
⇒ u 5 = - 3 . 2 3 4 = - 16 27
Phương pháp:
Số hạng tổng quát của CSN : u n = u 1 . q n - 1
Cách giải:
Ta có: u 1 = 2 , q = 3
Chọn D