K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2019

Chọn C

Phương pháp

 

Gọi a’ là hình chiếu vuông góc của a trên mặt phẳng (P).

 

Góc giữa đường thẳng a và mặt phẳng (P) là góc giữa đường thẳng a và a’.

3 tháng 2 2017

Đáp án C

Chọn D

6 tháng 1 2019

Chọn D.

Đề thi Học kì 2 Toán 11 có đáp án (Đề 1)

- Gọi G là trọng tâm tam giác ABC.

- Hình chóp S.ABC là hình chóp đều nên SG ⊥ (ABC).

Đề thi Học kì 2 Toán 11 có đáp án (Đề 1)

→ Góc giữa hai mặt phẳng (SBD) và (ABCD) bằng  90 °  

a: AC vuông góc BD

AC vuông góc SO

=>AC vuông góc (SBD)

b: (SA;(SBD))=(SA;SO)=gócASO

Xét ΔACB có BA=BC và góc ABC=60 độ

nên ΔBAC đều

=>AO=a/2

\(SA=\sqrt{SO^2+OA^2}=\sqrt{a^2+\dfrac{1}{4}a^2}=\dfrac{\sqrt{5}}{2}\cdot a\)

sin ASO=OA/SA=a/2:a*căn 5/2

\(=\dfrac{\sqrt{5}}{5}\)

=>góc ASO=27 độ

14 tháng 8 2018

Đáp án D

16 tháng 8 2017

1 tháng 10 2017

Chọn đáp án A

16 tháng 6 2023

 Gọi O là giao điểm của AC và BD. Dễ thấy \(\Delta OAB\) vuông tại O và \(OB=\dfrac{a\sqrt{3}}{2}\). Từ đó \(OA=\sqrt{AB^2-OB^2}=\sqrt{\left(\dfrac{\sqrt{3}}{2}a\right)^2-a^2}=\sqrt{\dfrac{1}{4}a^2}=\dfrac{a}{2}\) \(\Rightarrow AC=a\).

Vì \(SA\perp mp\left(ABCD\right)\) nên \(SA\perp AC\) tại A hay \(\Delta SAC\) vuông tại A. 

Lại có \(\tan SAC=\dfrac{SA}{AC}=\dfrac{a\sqrt{3}}{a}=\sqrt{3}\) nên \(\widehat{SAC}=60^o\), suy ra góc giữa SC và mp(ABCD) bằng 60o \(\Rightarrow\) Chọn A

 

16 tháng 6 2023

Chỗ \(\widehat{SAC}\) em sửa lại là \(\widehat{SCA}\) mới đúng ạ.