Cho đa giác đều 20 cạnh. Chọn ngẫu nhiên 4 đỉnh của đa giác. Tính xác suất để 4 đỉnh được chọn tạo thành một hình chữ nhật nhưng không phải hình vuông.
A. 8 969
B. 12 1615
C. 1 57
D. 3 323
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Chọn ngẫu nhiên 4 đỉnh trong 20 đỉnh có C 20 4 cách ⇒ n Ω = 4845
Đa giác 20 cạnh có 10 đường chéo đi qua tâm mà cứ 2 đường chéo đi qua tâm tạo thành một hình chữ nhật. Suy ra số hình chữ nhật tạo từ 10 đường chéo là C 10 2 = 45
Tuy nhiên trong 45 hình chữ nhật này có 5 hình vuông Số hình chữ nhật cần tính là 40
Vậy xác suất cần tính là P = 40 n Ω = 40 4845 = 8 969
Chọn đáp án D
Phương pháp
Nhận xét rằng: Đa giác đều có số đỉnh chẵn luôn tồn tại đường kính của đường tròn ngoại tiếp đa giác là đoạn nối hai đỉnh của đa giác.
Nên ta chia đường tròn ngoại tiếp đa giác đều đó thành hai nửa đường tròn và dựa vào tính đối xứng của các đỉnh để tạo thành một hình chữ nhật.
Tính số hình vuông trong các hình chữ nhật đó để tính xác suất 4 đỉnh tạo thành hình chữ nhật mà không phải hình vuông.
Cách giải
Số phần tử của không gian mẫu n Ω = C 24 4
Ta vẽ đường tròn ngoại tiếp đa giác đều 24 đỉnh. Vẽ một đường kính của đường tròn này. Khi đó hai nửa đường tròn đều chứa 12 đỉnh.
Với mỗi đỉnh thuộc nửa đường tròn thứ nhất ta đều có một đỉnh đối xứng với nó qua đường kính và thuộc nửa đường tròn còn lại.
Như vậy cứ hai đỉnh thuộc nửa đường tròn thứ nhất ta xác định được hai đỉnh đối xứng với nó qua đường kính và thuộc nửa đường tròn còn lại, bốn đỉnh này tạo thành một hình chữ nhật.
Vậy số hình chữ nhật có 4 đỉnh là các đỉnh của đa giác đã cho là C 12 2 .
Nhận thấy rằng trong số các hình chữ nhật tạo thành có 24:4=6 hình vuông (vì hình chữ nhật có các cạnh bằng nhau là hình vuông)
Nên số hình chữ nhật mà không phải hình vuông là C 12 2 - 6 .
Xác suất cần tìm là
Không gian mẫu \(\Omega\) là tập hợp tất cả các cách chọn ngẫu nhiên 4 đỉnh trong 12 đỉnh
Ta có \(n\left(\Omega\right)=C_{12}^4=495\)
Gọi A là biến cố : 4 đỉnh được chọn tạo thành một hình chữ nhật"
Gọi đường chéo của đa giác đều \(A_1A_2A_3...A_{12}\) đi qua tâm đường tròn (O) là đường chéo lớn thì đa giác đã cho có 6 đường chéo lớn.
Mỗi hình chữ nhật có các đỉnh là 4 đỉnh trong 12 điểm \(A_1,A_2,A_3,...A_{12}\) có các đường chéo là 2 đường chéo lớn. Ngược lại, mỗi cặp đường chéo lớn có các đầu mút là 4 đỉnh của một hình chữ nhâtk.
Do đó, số hình chữ nhật được tạo thành là : \(n\left(A\right)=C_6^2=15\)
Vậy xác suất cần tính là \(P\left(A\right)=\frac{n\left(A\right)}{n\left(\Omega\right)}=\frac{15}{495}=\frac{1}{33}\)
Đáp án C
Chọn ngẫu nhiên 4 đỉnh của đa giác có C 20 4 = 4845 c á c h
Đa giác đều 20 đỉnh có 10 đường chéo đi qua tâm đường tròn ngoại tiếp đa giác
Cứ 2 đường chéo bất kì là 2 đường chéo cuiả 1 hình chữ nhật
Do đó số hình chứ nhật là C 20 2 = 45
Vậy xác suất cần tìm là
P = 45 4845 = 3 323
Đáp án C
Chọn ngẫu nhiên 4 đỉnh của đa giác có C 20 4 = 4845 cách
Đa giác đều 20 đỉnh có 10 đường chéo đi qua tâm đường tròn ngoại tiếp đa giác
Cứ 2 đường chéo bất kì là 2 đường chéo cuiả 1 hình chữ nhật
Do đó số hình chứ nhật là C 20 2 = 45
Vậy xác suất cần tìm là P = 45 4845 = 3 323
Đáp án A
Có 10 đường kính của đường tròn được nối bởi 2 đỉnh của đa giác đều. Một hình chữ nhật có 4 đỉnh là đỉnh của một đa giác được tạo bởi 2 đường kính nói trên. Số cach chọn 4 đỉnh của đa giác là: .
Xác suất cần tìm là:
Đáp án A.
Có 10 đường kính của đường tròn được nối bởi 2 đỉnh của đa giác đều
Một hình chữ nhật có 4 đỉnh là đỉnh của đa giác được tạo bởi 2 đường kính nói trên
Số cách chọn 4 đỉnh của đa giác là C 20 4
Số cách chọn 4 đỉnh của hình chữ nhật là C 20 2
Vậy xác suất cần tính là P = C 10 2 C 20 4 = 3 323
Đáp án A
Ta có số cách chọn 4 đỉnh:
Hình hai mươi cạnh đều có 10 đường chéo đi qua tâm và chúng đều bằng nhau
Cứ hai đường chéo gộp lại ta được hai đường chéo của một hình chữ nhật
Vậy có tất cả hình chữ nhật thỏa mãn 4 đỉnh là 4 trong 20 đỉnh của hình cho
Kết luận:
Đáp án A
Chọn ngẫu nhiên 4 đỉnh trong 20 đỉnh có C 20 4 cách => n ( Ω ) = 4845
Đa giác 20 cạnh có 10 đường chéo đi qua tâm mà cứ 2 đường chéo đi qua tâm tạo thành một hình chữ nhật. Suy ra số hình chữ nhật tạo từ 10 đường chéo là C 10 2 = 45 .
Tuy nhiên trong 45 hình chữ nhật này có 5 hình vuông => Số hình chữ nhật cần tính là 40
Vậy xác suất cần tính là P = 40 n ( Ω ) = 40 4845 = 8 969 .