Cho hình chóp S.ABCD có đáy ABCD là hình thang cân, SA = 2a và SA vuông góc với mặt đáy (ABCD). Biết AD = 2a, AB = BC = CD = a. Diện tích S của mặt cầu ngoại tiếp hình chóp S.ABCD bằng bao nhiêu?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Phương pháp:
Xác định tâm đường tròn ngoại tiếp hình chóp
- Xác định tâm O đường tròn ngoại tiếp đa giác đáy.
- Vẽ đường thẳng (d) qua O và vuông góc đáy.
- Vẽ mặt phẳng trung trực của một cạnh bên bất kì cắt (d) tại I chính là tâm mặt cầu ngoại tiếp cần tìm và bán kính R = IA = IB =IC = …
Cách giải:
ABCD là hình thang cân => ABCD là tứ giác nội tiếp => Đường tròn ngoại tiếp tam giác BCD trùng với đường tròn ngoại tiếp hình thang ABCD.
Gọi I là trung điểm AD. Do AB = CD = BC = a, AD = 2a, ta dễ dàng chứng minh được I là tâm đường tròn ngoại tiếp ABCD => I là tâm đường tròn ngoại tiếp tam giác BCD.
Gọi M, N lần lượt là trung điểm của SD, SA.
Þ MI, MN là các đường trung bình của tam giác SAD
Þ MI//SA, MN//AD
Mà
Þ MB = MC = MD = MA, MN là trung trực của SA
Þ MB = MC = MD = MS (=MA)
Þ M là tâm khối cầu ngoại tiếp hình chóp S.BCD
Bán kính
Thể tích mặt cầu:
Đáp án D
Ta có R = S A 2 4 + R d 2 = a 2 + a 2 2 2 = a 3 2 ⇒ S = 4 π R 2 = 6 π a 2
Đáp án B.
Hướng dẫn giải:Ta có
Suy ra tam giác SAD vuông cân tại A nên SA = AD =2a .
Trong hình thang ABCD , kẻ B H ⊥ A D ( H ∈ A D ) .
Do ABCD là hình thang cân nên A H = A D - B C 2 = a 2 .
Tam giác AHB ,có B H = A B 2 - A H 2 = a 3 2
Diện tích S A B C D = 1 2 ( A D + B C ) . B H = 3 a 3 2 4 .
Vậy V S . A B C D = 1 3 S A B C D . S A = a 3 3 2
ABCD là hình thang cân có AB=CD=BC=2a,AD=2a ⇒ ABCD
là 1 nửa của hình lục giác đều, có tâm O là trung điểm của AD.
Gọi I là trung điểm của SD ⇒ OI//SA
Mà S A ⊥ ( A B C D ) ⇒ O I ⊥ ( A B C D ) ⇒ I là tâm mặt cầu ngoại tiếp
khối chóp S.ABCD ⇒ I là tâm mặt cầu ngoại tiếp khối chóp S.BCD.
Bán kính mặt cầu ngoại tiếp khối chóp S.BCD là:
R = S D 2 = S A 2 + A D 2 2 = 2 a 2 2 = a 2
Thể tích khối cầu đó là:
V = 4 3 πR 3 = 4 3 π a 2 3 = 8 πa 3 2 3
Chọn đáp án A.
Đáp án A
Phương pháp:
Cách xác định tâm mặt cầu ngoại tiếp khối chóp:
- Xác định tâm O của đường tròn ngoại tiếp đa giác đáy
- Từ O dựng đường thẳng d vuông góc với mặt phẳng đáy
- Dựng mặt phẳng trung trực α của một cạnh bên nào đó
- Xác định I = α ∩ d I chính là tâm mặt cầu ngoại tiếp hình chóp đã cho
Đáp án A
ABCD là hình thanh cân có AB = BC = CD = a; AD = 2a nên M là tâm của đáy ABCD.
SA = AD = 2a; SA ⊥ (ABCD) => tam giác SAD vuông cân tại A nên tâm mặt cầu ngoại tiếp hình chóp S.ABCD là trung điểm N của SD