K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2017

Chọn C

Số phần tử của không gian mẫu: .

Gọi biến cố : “Xếp 10 học sinh vào 10 ghế sao cho mỗi học sinh nam đều ngồi đối diện một học sinh nữ”.

Giả sử đánh vị trí ngồi như bảng sau:

Cách 1: Xếp vị trí A 1  có 10 cách. Mỗi cách xếp vị trí  A 1  sẽ có 5 cách xếp vị trí B 1 .

Mỗi cách xếp vị trí  A 1 ,  B 1  có 8 cách xếp vị trí , tương ứng sẽ có 4 cách xếp vị trí B 2 .

Cứ làm như vậy thì số cách xếp thỏa mãn biến cố  là: 

Cách 2: Đánh số cặp ghế đối diện nhau là C1, C2, C3, C4, C5

Xếp  bạn nam vào 5 cặp ghế có 5! cách.

Ở mỗi cặp ghế, ta có 2 cách xếp một cặp nam, nữ ngồi đối diện.

Số phần tử của A là: 

29 tháng 6 2017

Phương pháp:

Xếp lần lượt chỗ ngồi cho từng học sinh nam và nữ sao cho mỗi học sinh nam đều ngồi đối diện với một học sinh nữ. Sử dụng quy tắc nhân.

Cách giải:

Xếp ngẫu nhiên 10 học sinh vào 10 ghế cho 10! cách xếp  ⇒ n Ω = 10 !

Gọi A là biến cố: “mỗi học sinh nam đều ngồi đối diện với một học sinh nữ”.

+) Xếp học sinh nam thứ nhất vào 1 trong 10 vị trí cho 10 cách xếp.

Chọn 1 trong 5 bạn nữ xếp ngồi đối diện với bạn nam thứ nhất có 5 cách xếp.

+) Xếp bạn nam thứ 2 vào 1 trong 8 vị trí còn lại có 8 cách xếp.

Chọn 1 trong 4 bạn nữ còn lại xếp ngồi đối diện với bạn nam thứ hai có 4 cách xếp.

+) Xếp bạn nam thứ 3 vào 1 trong 6 vị trí còn lại có 6 cách xếp.

Chọn 1 trong 3 bạn nữ còn lại xếp ngồi đối diện với bạn nam thứ ba có 3 cách xếp.

+) Xếp bạn nam thứ 4 vào 1 trong 4 vị trí còn lại có 4 cách xếp.

Chọn 1 trong 2 bạn nữ còn lại xếp ngồi đối diện với bạn nam thứ tư có 2 cách xếp.

+) Xếp bạn nam thứ 5 vào 1 trong 2 vị trí còn lại có 2 cách xếp.

Xếp 1 bạn nữ còn lại vào vị trí cuối cùng có 1 cách xếp.

20 tháng 6 2019

Chọn D

Cách 1. Xếp ngẫu nhiên 10 học sinh vào hai dãy ghế có  cách.

Đánh số ghế lần lượt từ 1 đến 10.

 

Xếp học sinh thỏa mãn bài toán xảy ra hai khả năng sau:

Khả năng 1: Nam ngồi vị trí lẻ, nữ ngồi vị trí chẵn có 5!.5! cách.

Khả năng 2: Nam ngồi vị trí chẵn, nữ ngồi vị trí lẻ có 5!.5! cách.

Vậy có tất cả 2. ( 5 ! ) 2  cách.

Xác suất cần tìm bằng 

Cách 2: Xếp ngẫu nhiên 10 học sinh vào hai dãy ghế, có 10! cách xếp.

Ta chia hai dãy ghế thành 5 cặp ghế đối diện:

+ Chọn 1 nam và 1 nữ xếp vào cặp ghế 1 có   cách;

+ Chọn 1 nam và 1 nữ xếp vào cặp ghế 2 có  cách;

+ Chọn 1 nam và 1 nữ xếp vào cặp ghế 3 có  cách;

+ Chọn 1 nam và 1 nữ xếp vào cặp ghế 4 có  cách;

+ Chọn 1 nam và 1 nữ xếp vào cặp ghế 5 có 1 cách.

Vậy có tất cả  cách xếp thỏa mãn.

Xác suất cần tìm bằng  

26 tháng 2 2018

Xếp ngẫu nhiên 10 học sinh có 10! cách. Ta tìm số cách xếp thoả mãn

Đánh số ghế lần lượt từ 1 đến 10.

1

2

3

4

5

6

7

8

9

10

Nam xếp ghế lẻ, nữ xếp ghế chẵn có 5!5! cách

Nam xếp ghế chẵn, nữ xếp ghế lẻ có 5!5! cách

Vậy có tất cả 5!5!+5!5!cách xếp. Xác suất cần tính bằng  5 ! 5 ! + 5 ! 5 ! 10 ! = 1 126

Chọn đáp án D.

Cách 2: Chia thành 5 cặp ghế đối diện:

Chọn 1 nam và 1 nữ xếp vào cặp ghế 1 có C 5 1 C 5 1 2 ! cách

Chọn 1 nam và 1 nữ xếp vào cặp ghế 2 có C 4 1 C 4 1  cách;

Chọn 1 nam và 1 nữ xếp vào cặp ghế 2 có C 3 1 C 3 1  cách;

Chọn 1 nam và 1 nữ xếp vào cặp ghế 2 có C 2 1 C 2 1  cách;

Cặp nam và nữ còn lại xếp vào cặp ghế 5 có 1 cách.

Vậy có tất cả  ( C 5 1 C 4 1 C 3 1 C 2 1 ) 2 2 ! = 2 5 ! 2 cách xếp thoả mãn.

Xác suất cần tính bằng  2 5 ! 2 10 ! = 1 216

Chọn đáp án D.

9 tháng 12 2019



7 tháng 1 2017

Chọn đáp án A.

8 tháng 4 2019

Chọn A.

Số phần tử của không gian mẫu là n(W =) 6!.

Gọi  A là biến cố : "Các bạn học sinh nam ngồi đối diện các bạn nữ".

Chọn chỗ cho học sinh nam thứ nhất có 6 cách.

Chọn chỗ cho học sinh nam thứ 2 có 4 cách (không ngồi đối diện học sinh nam thứ nhất)

Chọn chỗ cho học sinh nam thứ 3 có 2 cách (không ngồi đối diện học sinh nam thứ nhất, thứ  hai).

Xếp chỗ cho 3 học sinh nữ : 3! cách.

Theo quy tắc nhân ta có  cách

17 tháng 10 2018

Đáp án là A

22 tháng 12 2017

Đáp án A

16 tháng 11 2018