Cho khối chóp tứ giác S.ABCD có đáy là hình bình hành, AD=4a, SA=SB=SC= a 6 Khi khối chóp S.ABCD có thể tích đạt giá trị lớn nhất, sin của góc giữa hai mặt phẳng (SBC) và (SCD) bằng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi x là độ dài cạnh đáy của chóp đều S.ABCD .
Gọi
Ta có:
Ta có:
Dễ dàng chứng minh được
cân tại H.
Xét tam giác SBC ta có:
Xét tam giác BDH có:
TH1:
TH2:
Xét tam giác vuông SOA có:
Chọn C.
Chọn D.
Theo giả thiết góc giữa SC và đáy bằng 60 o suy ra S C A ^ = 60 o
ABCD là hình chữ nhật nên A C = A B 2 + B C 2 = a 3
Tam giác SAC vuông tại A nên S A = A C . tan 60 o = 3 a
Diện tích đáy là S A B C D = A B . A D = 2 a 2
Thể tích khối chóp S.ABCD là V = 1 3 2 a 2 . 3 a = 2 a 3
Đáp án A
Dựng trục tọa độ với A 0 ; 0 ; 0 ; 0 ; 4 a ; 0 ; S 0 ; 0 ; 2 a 3
Ta có: A H = A B sin 60 0 = 3 a 3 2 ; B H = 3 a 2
Do đó B = 3 a 3 2 ; − 3 a 2 ; 0 ; C 3 a 3 2 ; 5 a 2 ; 0
Khi đó n S B C ¯ = k S B ¯ ; B C ¯ = 4 ; 0 ; 3 ; n S C D ¯ = k S C ¯ ; D C ¯ = 3 ; 3 ; 2 3
Do đó cos S B C ; S C D ^ = 10 3 4 2 + 3 2 24 = 1 2 ⇒ S B C ; S C D ^ = 45 0
ĐÁP ÁN: B