Cho hình chóp S.ABCD có đáy ABCD là hình vuông, AB =a 3 vuông góc với mặt phẳng đáy. Biết rằng khoảng cách giữa BD và SC bằng a 3 2 . Tính khoảng cách d từ B đến mặt phẳng (SCD)
A. a 6 2
B. a 6 2
C. a 2
D. 2 a 3 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn đáp án A
Gọi
Ta có:
Mặt khác
=> OI là đường vuông góc chung.
=> d(BD;SC) = OI
Kẻ
OI là đường trung bình của tam giác AKC.
Ta có:
Xét tam giác SAC vuông tại A:
Vậy khoảng cách giữa BD và SC bằng a 6 6
Đáp án D
Dựng
Dựng
Khi đó Cx cắt AB tại E và AK tại I suy ra BI là đường trung bình của ∆AEK ( Do BD qua trung điểm O của AC)
Ta có:
Do
Đáp án C
Gọi O = AC ∩ BD Kẻ OK ⊥ SC Do BD ⊥ (SAC) =>BD ⊥ OK
Do đó d(BC;SC) =OK= a 3 2
∆ S A C đ ồ n g d ạ n g ∆ O K C ( g - g )
⇒ S A O K = S C O C ⇔ x a 3 2 = x 2 + 12 a 2 a 3
⇒ x 2 = 6 a 2 ⇒ x = a 6 ⇔ S A = a 6
Khi đó: Kẻ AH ⊥ SD => AH ⊥ (SDC) => AH =d(A;(SCD))
Lại có AB//CD => AB //(SCD) => d(B;(SCD))= d(A;(SCD)=AH
∆ S A D vuông tại A có 1 A H 2 = 1 A S 2 + 1 A D 2 ⇒ A H = a 2