Giải phương trình
\(\sqrt{3x+1}-\sqrt{x+4}\) = 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK: \(-1\le x\le4\)
\(\sqrt{x+1}+\sqrt{4-x}=t\left(\sqrt{5}\le t\le\sqrt{10}\right)\Rightarrow\sqrt{-x^2+3x+4}=\dfrac{t^2-5}{2}\)
\(pt\Leftrightarrow t+\dfrac{t^2-5}{2}=5\)
\(\Leftrightarrow t^2+2t-15=0\)
\(\Leftrightarrow\left(t-3\right)\left(t+5\right)=0\)
\(\Leftrightarrow t=3\left(\text{Vì }\sqrt{5}\le t\le\sqrt{10}\right)\)
\(\Leftrightarrow\sqrt{x+1}+\sqrt{4-x}=3\)
\(\Leftrightarrow5+2\sqrt{-x^2+3x+4}=9\)
\(\Leftrightarrow\sqrt{-x^2+3x+4}=2\)
\(\Leftrightarrow-x^2+3x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=3\left(tm\right)\end{matrix}\right.\)
1.
ĐKXĐ: \(x\ge\dfrac{3+\sqrt{41}}{4}\)
\(\Leftrightarrow x^2+x-1+2\sqrt{x\left(x^2-1\right)}=2x^2-3x-4\)
\(\Leftrightarrow x^2-4x-3-2\sqrt{\left(x^2-x\right)\left(x+1\right)}=0\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-x}=a>0\\\sqrt{x+1}=b>0\end{matrix}\right.\)
\(\Rightarrow a^2-3b^2-2ab=0\)
\(\Leftrightarrow\left(a+b\right)\left(a-3b\right)=0\)
\(\Leftrightarrow a=3b\)
\(\Leftrightarrow\sqrt{x^2-x}=3\sqrt{x+1}\)
\(\Leftrightarrow x^2-x=9\left(x+1\right)\)
\(\Leftrightarrow...\) (bạn tự hoàn thành nhé)
2.
ĐKXĐ: \(x\ge-1\)
Đặt \(\sqrt{x+1}=a\ge0\) pt trở thành:
\(x^3+3\left(x^2-4a^2\right)a=0\)
\(\Leftrightarrow x^3+3ax^2-4a^3=0\)
\(\Leftrightarrow\left(x-a\right)\left(x+2a\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=x\\2a=-x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+1}=x\left(x\ge0\right)\\2\sqrt{x+1}=-x\left(x\le0\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=x+1\\x^2=4x+4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-x-1=0\\x^2-4x-4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1+\sqrt{5}}{2}\\x=2-2\sqrt{2}\end{matrix}\right.\)
1) \(\sqrt[]{3x+7}-5< 0\)
\(\Leftrightarrow\sqrt[]{3x+7}< 5\)
\(\Leftrightarrow3x+7\ge0\cap3x+7< 25\)
\(\Leftrightarrow x\ge-\dfrac{7}{3}\cap x< 6\)
\(\Leftrightarrow-\dfrac{7}{3}\le x< 6\)
ĐKXĐ: \(-\dfrac{1}{3}\le x\le4\)
\(\Leftrightarrow x+5=\sqrt{3x+1}+2\sqrt{4-x}\)
Ta có:
\(VP=1.\sqrt{3x+1}+2.\sqrt{4-x}\le\dfrac{1}{2}\left(1+3x+1\right)+\dfrac{1}{2}\left(4+4-x\right)=x+5\)
\(\Rightarrow VP\le VT\)
Dấu "=" xảy ra khi và chỉ khi: \(\left\{{}\begin{matrix}\sqrt{3x+1}=1\\\sqrt{4-x}=2\end{matrix}\right.\) \(\Leftrightarrow x=0\)
\(PT\Leftrightarrow\sqrt{3x+1}=\sqrt{x+4}+1\\ \Leftrightarrow3x+1=x+5+2\sqrt{x+4}\\ \Leftrightarrow2x-4=2\sqrt{x+4}\\ \Leftrightarrow x-2=\sqrt{x+4}\\ \Leftrightarrow x^2-4x+4=x+4\\ \Leftrightarrow x^2-5x=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)
Thử lại ta thấy x=0 ko thỏa mãn
Vậy PT có nghiệm x=5
ĐKXĐ: \(x\ge-\dfrac{1}{3}\)
\(\sqrt{3x+1}=1+\sqrt{x+4}\)
\(\Leftrightarrow3x+1=1+x+4+2\sqrt{x+2}\)
\(\Leftrightarrow x+2-\sqrt{x+2}-4=0\)
Đặt \(\sqrt{x+2}=t\ge0\)
\(\Rightarrow t^2-t-4=0\Rightarrow\left[{}\begin{matrix}t=\dfrac{1+\sqrt{17}}{2}\\t=\dfrac{1-\sqrt{17}}{2}< 0\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x+2}=\dfrac{1+\sqrt{17}}{2}\)
\(\Rightarrow x=\dfrac{5+\sqrt{17}}{2}\)