Cho hình chóp S.ABCD, G là điểm nằm trong tam giác SCD, E, F lần lượt là trung điểm của AB và AD. Thiết diện của hình chóp khi cắt bởi mặt phẳng (EFG) là:
A. Tứ giác
B. Lục giác
C. Tam giác
D. Ngũ giác
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Phương pháp: Xác định giao tuyến của (EFG) với tất cả các mặt của hình chóp.
Cách giải:
Kéo dài EF cắt CD tại M và cắt BC tại N.
Trong mặt phẳng (SCD) nối GM cắt SD tại I và cắt SC tại K.
Trong mặt phẳng (SAB) nối NK cắt SB tại P.
Khi đó thiết diện của hình chóp khi cắt bởi mặt
phẳng (EFG) là EFIKP, là một ngũ giác
Đáp án A
Qua G kẻ đường thẳng d song song với AB và cắt SA, SB lần lượt tại hai điểm Q, P. Vì MN là đường trung bình của ABCD ⇒ MN//AB
Do đó MN//PQ. Vậy giao tuyến của mặt phẳng (MNG) và (SAB) là PQ.
Mặt phẳng (MNG) cắt khối chóp S.ABCD theo thiết diện là tứ giác MNPQ
Vì MN//PQ suy ra MNPQ là hình thang
Để MNPQ là hình bình hành ⇔ MN=PQ (1)
Gọi I là trung điểm của AB, G là trọng tâm tam giác S A B ⇒ S G S I = 2 3
Tam giác SAB có P Q / / A B ⇒ P Q A B = S G S I = 2 3 ⇔ P Q = 2 3 A B (2)
Mà MN là đường trung bình hình thang A B C D ⇒ M N = A B + C D 2 (3)
Từ (1) , (2) và (3) suy ra 2 3 A B = A B + C D 2 ⇔ 4 A B = 3 A B + 3 C D ⇔ A B = 3 C D .
Đáp án là B
Ta có: S H ⊥ A B ⇒ S H ⊥ A B C D .
Do A B / / C D ⇒ S A B ∩ S C D = S x / / A B . Mặt khác S H ⊥ C D S K ⊥ C D ⇒ S H ⊥ S x S K ⊥ S x
Suy ra góc giữa hai mặt phẳng S A B và S C D là góc giữa hai đường thẳng S H và S K .
Ta có: S H = 3 a 2 , H K = a . .
Xét tam giác S H K : tan H S K ^ = H K S H = 2 a a 3 = 2 3 3 .
Vậy tan α = 2 3 3 .