Tập nghiệm của bất phương trình x ln x + e ln 2 x ≤ 2 e 4 có dạng S = [a; b]. Tích a.b bằng
A. 1
B. e
C. e 3
D. e 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ln|(x − 2)(x + 4)| ≤ ln8
⇔| x 2 + 2x − 8| ≤ 8
⇔ −8 ≤ x 2 + 2x – 8 ≤ 8
Vậy tập nghiệm là
Đáp án D.
Cách 1: Tư duy tự luận
Điều kiện: x 2 > 0 ⇔ x ≠ 0.
Bất phương trình
( 2 x 2 − 4 − 1 ) . ln ( x 2 ) < 0 ⇔ 2 x 2 − 4 − 1 < 0 ln ( x 2 ) > 0 2 x 2 − 4 − 1 > 0 ln ( x 2 ) < 0 ⇔ x 2 − 4 < 0 x 2 > 1 x 2 − 4 > 0 x 2 < 1 ( L )
⇔ ( x − 2 ) ( x + 2 ) < 0 ( x − 1 ) ( x + 1 ) > 0 ⇔ − 2 < x < 2 x > 1 x < − 1 ⇔ 1 < x < 2 − 2 < x < − 1
Vậy tập nghiệm của bất phương trình là S = ( − 2 ; − 1 ) ∪ ( 1 ; 2 ) .
Cách 2: Sử dụng máy tính cầm tay
Nhập vào màn hình biểu thức 2 x 2 − 4 − 1 . ln ( X 2 ) và CALC với X = − 2 ; − 1 ; 1 ; 2.
Ta xét dấu của biểu thức 2 X 2 − 4 − 1 . ln ( X 2 ) trên mỗi khoảng ( − ∞ ; − 2 ) , ( − 2 ; − 1 ) , ( − 1 ; 1 ) , ( 1,2 ) , ( 2 ; + ∞ ) .
Tiếp tục dùng CACL:
Vậy
( 2 x 2 − 4 − 1 ) . ln ( x 2 ) < 0 ⇔ x ∈ ( − 2 ; − 1 ) ∪ ( 1 ; 2 ) .