Một mặt phẳng chứa trục hình trụ, cắt hình trụ đó theo thiết diện là một hình vuông cạnh a. Tính thể tích V của hình trụ đó.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C.
ABCD là hình vuông với DC=2R=4cm từ đó Ad=4cm
Từ đó: V H i n h = S d a y . A D = π 2 2 .4 = 16 π c m 2 .
Đáp án C.
Gọi R,h,l lần lượt là bán kính đáy, chiều cao, đường sinh của hình trụ.
Ta có diện tích xung quanh S x q = 4 π ⇔ 2 πRl = 4 π ⇒ Rl = 2 .
Giả sử AB là một dây cung của đường tròn đáy của hình trụ và căng một cung 120 ° . Vì ABA’A’ là hình chữ nhật có AA' = h = l.
Xét tam giác OAB cân tại O, có O A = O B = R A O B ^ = 120 ° ⇒ A B = R 3 .
Vậy diện tích cần tính là S A B B ' A ' = A B . A A ' = R 3 . 1 = 2 3 .
Chọn A