Cho hình trụ có bán kính R và chiều cao 3 R . Hai điểm A, B lần lượt nằm trên hai đường tròn đáy sao cho góc giữa AB và trục d của hình trụ bằng 30 ° . Tính khoảng cách giữa AB và trục của hình trụ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi O,
O
'
lần lượt là tâm của hai hình tròn đáy (như hình vẽ). Dựng AD, BC song song O
O
'
, với
C
∈
O
;
D
∈
O
'
. Gọi M là trung điểm của AC.
Ta có:
Ta có:
Chọn: A
Đáp án C.
Gọi tâm hai đáy là O và O'. A ∈ O . Dựng hình chữ nhật A O O ' A ' .
Ta có A ' A B ^ = 30 ° ⇒ A ' B = A ' A . tan 30 ° = r . Suy ra tam giác A ' O ' B là tam giác đều.
Vì O O ' / / A A ' nên O O ' / / A A ' B .
Do đó d O O ' ; A B = d O O ' ; A A ' B = d O ' ; A A ' B
Gọi H là trung điểm của A'B.
⇒ O ' H ⊥ A A ' B ⇒ d O ' ; A A ' B = O H = O ' A ' 3 2 = r 3 2
Theo công thức ta có:
Sxq = 2πrh = 2√3 πr2
Stp = 2πrh + 2πr2 = 2√3 πr2 + 2 πr2 = 2(√3 + 1)πr2 ( đơn vị thể tích)
b) Vtrụ = πR2h = √3 π r3
c) Giả sử trục của hình trụ là O1O2 và A nằm trên đường tròn tâm O1, B nằm trên đường tròn tâm O2; I là trung điểm của O1O2, J là trung điểm cảu AB. Khi đó IJ là đường vuông góc chung của O1O2 và AB. Hạ BB1 vuông góc với đáy, J1 là hình chiếu vuông góc của J xuống đáy.
Ta có là trung điểm của , = IJ.
Theo giả thiết = 300.
do vậy: AB1 = BB1.tan 300 = = r.
Xét tam giác vuông
AB1 = BB1.tan 300 = O1J1A vuông tại J1, ta có: = - .
Vậy khoảng cách giữa AB và O1O2 :
Theo công thức ta có:
Sxq = 2πrh = 2√3 πr2
Stp = 2πrh + 2πr2 = 2√3 πr2 + 2 πr2 = 2(√3 + 1)πr2 ( đơn vị thể tích)
b) Vtrụ = πR2h = √3 π r3
c) Giả sử trục của hình trụ là O1O2 và A nằm trên đường tròn tâm O1, B nằm trên đường tròn tâm O2; I là trung điểm của O1O2, J là trung điểm cảu AB. Khi đó IJ là đường vuông góc chung của O1O2 và AB. Hạ BB1 vuông góc với đáy, J1 là hình chiếu vuông góc của J xuống đáy.
Ta có là trung điểm của , = IJ.
Theo giả thiết = 300.
do vậy: AB1 = BB1.tan 300 = = r.
Xét tam giác vuông
AB1 = BB1.tan 300 = O1J1A vuông tại J1, ta có: = - .
Vậy khoảng cách giữa AB và O1O2 :
Góc giữa hai bán kính đáy OA và O’B là ∠ AOB′ và ∠ A′O′B
Vì AB’ = r nên AOB’ là tam giác đều , do đó ∠ AOB′=60 °