Gía trị nhỏ nhất của biểu thức C=2(x2+7)-(5-2)IxI là ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì | 2x - 7 | ≥ 0 ∀ x ∈ Z
Để | 2x - 7 | + 5 - 2x min <=> 2x - 7 = 0 => x = 7/2
=> min A = 5 + 2.7/2 = 12
Vậy min A = 12 tại x = 7/2
\(P=\left|x+3\right|+\left|x-2\right|+\left|x-5\right|\)
\(=\left|x+3\right|+\left|x-2\right|+\left|5-x\right|\)
\(\ge x+3+0+5-x=8\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x+3\ge0\\x-2=0\\5-x\le0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x\ge-3\\x=2\\x\le5\end{cases}}\)\(\Rightarrow x=2\)
Vậy \(Min_P=8\Leftrightarrow x=2\)
x^2+5 > 5
=>(x^2+5)^2 > 5^2=25
=>(x^2+5)^2+10 > 25+10=35
=>Amax=35<=>x^2=0<=>x=0
vậy...
\(x^2-2\left(m-3\right)x-6m-7\\\Delta'=\left(m-3\right)^2-\left(-6m-7\right)=m^2-6m+9+6m+7\\ =m^2+16>0\forall m\)
=> pt luôn có 2 no pb
theo viet \(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=2\left(m-3\right)\\x_1.x_2=-6m-7\end{matrix}\right.\)
\(C=\left(x_1+x_2\right)^2+8x_1x_2\\ =\left[2\left(m-3\right)\right]^2+8\left(-6m-7\right)\\ =4\left(m-3\right)^2-48m-56\\ =4\left(m^2-6m+9\right)-48m-56\\ =4m^2-72m-20\\ =\left(2m\right)^2-2.2m.18+18^2-344\\ =\left(2m-18\right)^2-344\)
có \(\left(2m-18\right)^2\ge0\forall m\\ \Rightarrow\left(2m-18\right)^2-344\ge-344\)
vậy..
\(C=\left(x_1+x_2\right)^2+8x_1x_2\)
\(=\left(2m-6\right)^2+8\left(-6m-7\right)\)
\(=4m^2-24m+36-48m-56\)
\(=4m^2-72m-20\)
\(=4m^2-72m+324-344\)
\(=\left(2m-18\right)^2-344\ge-344\forall x\)
Dấu '=' xảy ra khi m=9