Tìm tất cả các giá trị thực của tham số m để hàm số chỉ có cực tiểu mà không có cực đại
A.
B.
C.
D.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn B
[Phương pháp tự luận]
y ' = 4 ( m - 1 ) x 3 - 6 m x = 0 (*)
TH1 : Nếu m = 1 , (*) trở thành : y ' = - 6 x = 0 hay x= 0 , y ' ' = - 6 < 0
Vậy m = 1 hàm số đạt cực đại tại x = 0
TH2 : Nếu m ≠ 1
Hàm số có cực đại mà ko có cực tiểu
Kết hợp 2 trường hợp : m ∈ [ 0 ; 1 ]
Chọn B.
Hàm số trùng phương có một cực tiểu mà không có cực đại khi
Chọn A.
Ta có y ' = 2 x 3 - 2 m x = 2 x x 2 - m
m > 0 thì y’=0 có ba nghiệm phân biệt và hàm số có một cực tiểu, hai cực đại.
m ≤ 0 thì y’ = 0 có nghiệm duy nhất x = 0 là điểm cực tiểu của hàm số.
Vậy m ≤ 0
Đáp án C
TH1: suy ra hàm số có điểm cực đại nhận m=0.
TH2: .
Theo yêu cầu bài toán
.
Vậy là giá trị cần tìm.
\(y'=4x^3+12mx^2+6\left(m+1\right)x=2x\left[2x^2+6mx+3\left(m+1\right)\right]\)
Hàm có cực tiểu mà ko có cực đại khi và chỉ khi \(y'=0\) có đúng 1 nghiệm đơn
TH1: \(2x^2+6mx+3\left(m+1\right)=0\) có nghiệm \(x=0\)
\(\Leftrightarrow m=-1\)
TH2: \(2x^2+6mx+3\left(m+1\right)=0\) có ít hơn 2 nghiệm
\(\Leftrightarrow\Delta'=9m^2-6\left(m+1\right)\le0\)
\(\Leftrightarrow\dfrac{1-\sqrt{7}}{3}\le m\le\dfrac{1+\sqrt{7}}{3}\)