K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2019

Đáp án B

21 tháng 5 2017

Đáp án B

11 tháng 10 2019

Giải sách bài tập Toán 12 | Giải sbt Toán 12

 
12 tháng 8 2018

Đáp án B

Để ý thấy lời giải bài toán sai ở bước 3 do m có thể nhỏ hơn 0

27 tháng 6 2018

17 tháng 7 2017

bài 1

coi bậc 2 với ẩn x tham số y D(x) phải chính phường

<=> (2y-3)^2 -4(2y^2 -3y+2) =k^2

=> -8y^2 +1 =k^2 => y =0

với y =0 => x =-1 và -2

17 tháng 5 2017

x = - 7 11 ; y = - 6 11

AH
Akai Haruma
Giáo viên
11 tháng 8 2017

Lời giải:

Bài 1:

Để ĐTHS \(y=\frac{ax+2}{x-b}\) có tiệm cận ngang \(y=2\) thì cần \(a=2\)

Khi đó \(y=\frac{2x+2}{x-b}\) \(\)

Vì ĐTHS đi qua điểm \(M(2,2)\Rightarrow 2=\frac{4+2}{2-b}\Rightarrow b=-1\)

Ta có \(y=\frac{2x+2}{x+1}=2\) (thỏa mãn đkđb)

Vậy \(a=2,b=-1\)

Bài 2:

Dựa vào định nghĩa , nếu \(\lim_{x\rightarrow \infty}y=t\) thì \(y=t\) là tiệm cận ngang của ĐTHS ($x$ tiến đến âm, dương vô cùng)

Như vậy:

Nếu \(m>0\) thì hàm số xác định với mọi \(x\in\mathbb{R}\), khi đó \(\frac{1}{\sqrt{m}}\) chính là TCN của ĐTHS

Nếu \(m=0\Rightarrow y=x+1\) là hàm đa thức hiển nhiên không có TCN

Nếu \(m<0\) thì hàm số xác định chỉ trong một khoảng nào đó của $x$, khi đó ĐTHS hiển nhiên không có TCN.

Vậy \(m\leq 0\)

25 tháng 9 2017