K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2018

a, 6/3=2

b, 7/6

2 tháng 9 2019

ta có: a + b=-2 ; a^2 + b^2 = 52

=> (a+b)^2 = 4 => a^2 + 2ab + b^2 = 4

=> 52 + 2ab= 4

=> 48= -2ab

=> ab= -24

a^3 + b^3 = (a+b)( a^2-ab+ b^2)

=> a^3 + b^3 = -2.(52+24)= -2. 76= -152

4 tháng 11 2023

Bài 1

a) 3 2/5 - 1/2

= 17/5 - 1/2

= 34/10 - 5/10

= 29/10

b) 4/5 + 1/5 × 3/4

= 4/5 + 3/20

= 16/20 + 3/20

= 19/20

c) 3 1/2 × 1 1/7

= 7/2 × 8/7

= 4

d) 4 1/6 : 2 1/3

= 25/6 : 7/3

= 25/14

4 tháng 11 2023

Bài 2

a) 3 × 1/2 + 1/4 × 1/3

= 3/2 + 1/12

= 18/12 + 1/12

= 19/12

b) 1 4/5 - 2/3 : 2 1/3

= 9/5 - 2/3 : 7/3

= 9/5 - 2/7

= 63/35 - 10/35

= 53/35

 

6 tháng 10 2023

Ta có công thức tổng quát như sau:

\(A=n^k+n^{k+1}+n^{k+2}+...+n^{k+x}\Rightarrow A=\dfrac{n^{k+x+1}-n^k}{n-1}\)

Áp dụng ta có:

\(A=1+4+4^2+...+4^6=\dfrac{4^7-1}{3}\) 

\(\Rightarrow B-3A=4^7-3\cdot\dfrac{4^7-1}{3}=1\)

______

\(A=2^0+2^1+...+2^{2008}=2^{2009}-1\)

\(\Rightarrow B-A=2^{2009}-2^{2009}+1=1\)

_____

\(A=1+3+3^2+....+3^{2006}=\dfrac{3^{2007}-1}{2}\)

\(\Rightarrow B-2A=3^{2007}-2\cdot\dfrac{3^{2007}-1}{2}=1\)

4 tháng 11 2023

Bài 1:

a, 3\(\dfrac{2}{5}\) - \(\dfrac{1}{2}\) 

\(\dfrac{17}{5}\) - \(\dfrac{1}{2}\) 

\(\dfrac{34}{10}\) - \(\dfrac{5}{10}\)

\(\dfrac{29}{10}\)

b, \(\dfrac{4}{5}\) + \(\dfrac{1}{5}\) x \(\dfrac{3}{4}\)

\(\dfrac{4\times4}{5\times4}\) + \(\dfrac{1\times3}{5\times4}\)

\(\dfrac{16}{20}\) + \(\dfrac{3}{20}\)

\(\dfrac{19}{20}\)

c, 4\(\dfrac{4}{9}\) : 2\(\dfrac{2}{3}\) + 3\(\dfrac{1}{6}\)

\(\dfrac{40}{9}\) : \(\dfrac{8}{3}\) + \(\dfrac{19}{6}\)

\(\dfrac{5}{3}\) + \(\dfrac{19}{6}\)

\(\dfrac{10}{6}\) + \(\dfrac{19}{6}\)

\(\dfrac{29}{6}\)

4 tháng 11 2023

Bài 2:

   3\(\dfrac{2}{5}\) + 2\(\dfrac{1}{5}\) 

\(\dfrac{17}{5}\) + \(\dfrac{11}{5}\)

\(\dfrac{28}{5}\)

b, 7\(\dfrac{1}{6}\) : 5\(\dfrac{2}{3}\)

\(\dfrac{43}{6}\) : \(\dfrac{17}{3}\)

\(\dfrac{43}{34}\)

  

9 tháng 4 2022

1/5

1/6

9 tháng 4 2022

1/5

1/6

29 tháng 8 2023

giúp mình với !!!!!!!!!!!!!!!!!!!!!!!!

29 tháng 8 2023

Câu b, bài b1 chứng minh \(a=2^{2006}-1?\)

23 tháng 10 2016

Bài 1:

A = 1 + 3 + 32 + ... + 3100

=> 3A = 3 + 32 + ... + 3101

=> 2A = 3101 - 1

=> A = \(\frac{3^{101}-1}{2}\)

B = 1 + 42 + 44 + ... + 4100

=> 8B = 42 + 44 + ... + 4102

=> 7B = 4102 - 1

=> B = \(\frac{4^{102}-1}{7}\)

Bài 2:

a) S1 = 22 + 42 + ... + 202

=> S1 = 22(1+22+...+102)

=> S1 = 22.385

=> S1 = 1540

b) S2 = 1002 + 2002 + ... + 10002

=> S2 = 1002(1+22+...+102)

=> S2 = 1002.385

=> S2 = 3850000

 

Bài 3:

a: a*S=a^2+a^3+...+a^2023

=>(a-1)*S=a^2023-a

=>\(S=\dfrac{a^{2023}-a}{a-1}\)

b: a*B=a^2-a^3+...-a^2023

=>(a+1)B=a-a^2023

=>\(B=\dfrac{a-a^{2023}}{a+1}\)

a: A=3^2(1^2+2^2+...+10^2)

=9*385

=3465

b: B=2^3(1^3+2^3+...+10^3)

=8*3025

=24200

10 tháng 8 2023

Mình cảm ơn bạn nhiều

Bài 2: 

\(a^2+b^2=\left(a+b\right)^2-2ab=5^2-2\cdot\left(-2\right)=9\)

\(\dfrac{1}{a^3}+\dfrac{1}{b^3}=\dfrac{a^3+b^3}{a^3b^3}=\dfrac{\left(a+b\right)^3-3ab\left(a+b\right)}{\left(ab\right)^3}\)

\(=\dfrac{5^3-3\cdot5\cdot\left(-2\right)}{\left(-2\right)^3}=\dfrac{125+30}{8}=\dfrac{155}{8}\)

\(a-b=-\sqrt{\left(a+b\right)^2-4ab}=-\sqrt{5^2-4\cdot\left(-2\right)}=-\sqrt{33}\)