K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2018

Đáp án A.

Bài 1:

a) Ta có: (a-b)+(c-d)-(a+c)

=a-b+c-d-a-c

=-b-d(1)

Ta lại có: -(b+d)=-b-d(2)

Từ (1) và (2) suy ra (a-b)+(c-d)-(a+c)=-(b+d)

b) Ta có: (a-b)-(c-d)+(b+c)

=a-b-c+d+b+c

=a+d(đpcm)

c) Ta có: a(b-c)-b(a-c)

=ab-ac-ab+cb

=cb-ca

=c(b-a)(đpcm)

d) Ta có: b(c-a)+a(b-c)

=bc-ba+ab-ac

=bc-ac

=c(b-a)(đpcm)

e) Ta có: -c(-a+b)+b(c-a)

=ca-cb+bc-ba

=ca-ba

=a(c-b)(đpcm)

g) Ta có: a(c-b)-b(-a-c)

=ac-ab+ba+bc

=ac+bc

=c(a+b)(đpcm)

29 tháng 2 2020

Cảm ơn bạn rất nhiều nha

1. bất phương trình \(\frac{3x+5}{2}-1\le\frac{x+2}{3}+x\) có bao nhiêu nghiệm nguyên lớn hơn -10 A.4 B.5 C.9 D.10 2. tổng các nghiệm của bất phương trình x(2-x) ≥ x(7-x) - 6(x-1) trên đoạn \([-10;10]\) A. 5 B.6 C.21 D.40 3. tập nghiệm S của bất phương trình 5( x+1) - x( 7-x) > -2x A. R B. \(\left(-\frac{5}{2};+\infty\right)\) C.\(\left(-\infty;\frac{5}{2}\right)\) D. ϕ 4. Tập...
Đọc tiếp

1. bất phương trình \(\frac{3x+5}{2}-1\le\frac{x+2}{3}+x\) có bao nhiêu nghiệm nguyên lớn hơn -10

A.4 B.5 C.9 D.10

2. tổng các nghiệm của bất phương trình x(2-x) ≥ x(7-x) - 6(x-1) trên đoạn \([-10;10]\)

A. 5 B.6 C.21 D.40

3. tập nghiệm S của bất phương trình 5( x+1) - x( 7-x) > -2x

A. R B. \(\left(-\frac{5}{2};+\infty\right)\) C.\(\left(-\infty;\frac{5}{2}\right)\) D. ϕ

4. Tập nghiệm S của bất phương trình x+\(\sqrt{x}< \left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)\)

A. (-∞;3) B. (3; +∞) C. [3; +∞) D. (-∞; 3]

5. tổng các nghiệm nguyên của bất phương trình \(\frac{x-2}{\sqrt{x-4}}\le\frac{4}{\sqrt{x-4}}\) bằng

A. 15 B. 26 C. 11 D. 0

6. bất phương trình (m2- 3m )x + m < 2- 2x vô nghiệm khi

A. m ≠1 B. m≠2 C. m=1 , m=2 D. m∈ R

7. có bao nhiêu giá trị thực của tham số m để bất phương trình ( m2 -m )x < m vô nghiệm

A. 0 B.1 C.2 D. vô số

8. gọi S là tập hợp tất cả các giá trị thực của tham số m để bất phương trình (m2 -m)x + m< 6x -2 vô nghiệm. tổng các phần tử trong S là

A. 0 B.1 C.2 D.3

9. tìm tất cả các giá trị thực của tham số m để bất phương trình m2( x-2) -mx +x+5 < 0 nghiệm đúng với mọi x∈ [-2018; 2]

A. m< \(\frac{7}{2}\) B. m=​ \(\frac{7}{2}\) C. m > \(\frac{7}{2}\) D. m ∈ R

10. tìm tất cả các giá trị thực của tham số m để bất phương trình m2 (x-2) +m+x ≥ 0 có nghiệm x ∈ [-1;2]

A. m≥ -2 B. m= -2 C. m ≥ -1 D. m ≤ -2

0
NV
2 tháng 2 2024

Sử dụng tính đơn điệu của hàm mũ: hàm \(y=a^x\) nghịch biến khi \(0< a< 1\) và đồng biến khi \(a>1\)

\(a^2=b^2+c^2\Rightarrow\left(\dfrac{b}{a}\right)^2+\left(\dfrac{c}{a}\right)^2=1\)

\(\Rightarrow\left\{{}\begin{matrix}0< \dfrac{b}{a}< 1\\0< \dfrac{c}{a}< 1\end{matrix}\right.\) nên các hàm \(\left(\dfrac{b}{a}\right)^x\) và \(\left(\dfrac{c}{a}\right)^x\) đều nghịch biến

Xét: \(\dfrac{b^m+c^m}{a^m}=\left(\dfrac{b}{a}\right)^m+\left(\dfrac{c}{a}\right)^m\) \(\)

 

- Khi \(m>2\Rightarrow\left(\dfrac{b}{a}\right)^m< \left(\dfrac{b}{a}\right)^2\) và \(\left(\dfrac{c}{a}\right)^m< \left(\dfrac{c}{a}\right)^2\)

 

\(\Rightarrow\left(\dfrac{b}{a}\right)^m+\left(\dfrac{c}{a}\right)^m< \left(\dfrac{b}{a}\right)^2+\left(\dfrac{c}{a}\right)^2=1\)

Hay \(\dfrac{b^m+c^m}{a^m}< 1\) \(\Rightarrow a^m>b^m+c^m\)

Câu b c/m tương tự, \(m< 2\) thì \(\left(\dfrac{b}{a}\right)^m>\left(\dfrac{b}{a}\right)^2...\)

2 tháng 2 2024

Anh ơi! Hàm số mũ có tính đơn điệu như trên chỉ đối với mũ nguyên dương thôi ạ anh. 

14 tháng 11 2018

a) C = c + d + 2 ( c − d ) 3 = ( 3 c − d ) 3 .  

b)  D = m − n ( n + p ) 3 = ( m − 2 n − p ) 3 .

14 tháng 7 2017

a) \(\cdot\left(m+n\right)^2-\left(m-n\right)^2+\left(m+n\right)\left(m-n\right)\)

\(=\left(m+n+m-n\right)\left(m+n-m+n\right)+\left(m+n\right)\left(m-n\right)\)

\(=\left(2m\cdot2n\right)+m^2-n^2\)

\(=4mn+m^2-n^2\)

b) \(\left(a+b\right)^2-\left(a-b\right)^2-2a^3\)

\(=\left(a+b+a-b\right)\left(a+b-a+b\right)-2a^3\)

\(=2ab-2a^3\)

c) \(\left(2x+1\right)^2+\left(2x-1\right)^2+2\left(4x^2-1\right)\)

\(=\left(2x+1\right)^2+2\left(2x+1\right)\left(2x-1\right)+\left(2x-1\right)^2\)

\(=\left(2x+1+2x-1\right)^2\)

\(=\left(4x\right)^2=16x^2\)

d) \(\left(a+b+c\right)^2-2\left(a+b+c\right)\left(b+c\right)+\left(b+c\right)^2\)

\(=\left(a+b+c-b-c\right)^2=a^2\)

14 tháng 7 2017

xin lỗi mk ghi sai đề ở bài :d) (a+b+c)^2-2(a+b+c)(b+c)+(b+c)^2

Chọn C

4 tháng 12 2021

Vecto AB = (3 - m; 3 - 2m)
Vecto AC = (-2; 2)
A, B, C thẳng hàng
<=> vecto AB và vecto AC cùng phương
<=> (3 - m)/(-2) = (3 - 2m)/2
<=> m - 3 = 3 - 2m
<=> 3m = 6
=> m = 2

-> A

6 tháng 3 2024