Tìm m để B=(-5;0) giao [2m-1;2m+7) khác rỗng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
\(A\cap B=\varnothing\Leftrightarrow\left[{}\begin{matrix}m+4< -5\\m>11\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}m< -9\\m>11\end{matrix}\right.\)
b.
\(A\cap B\ne\varnothing\Leftrightarrow-9\le m\le11\)
a)\(\left(-3;m\right)\subset\)\((-4;5]\)
\(\Leftrightarrow m\le5\)
b)\(\left(m+1;3+m\right)\cap\)\([-3;5)\)\(=\varnothing\)
\(\Leftrightarrow\left[{}\begin{matrix}3+m< -3\\m+1\ge5\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}m< -6\\m\ge4\end{matrix}\right.\)
Vậy..
1)Điểm A(2;2m-3) thuộc Ox thì tung độ phải =0
\(\Rightarrow2m-3=0\Rightarrow2m=3\Rightarrow m=\frac{3}{2}\)
2)Điểm B(m2-4;5) thuộc Oy thì hoành độ =0
\(\Rightarrow m^2-4=0\Rightarrow m^2=4\Rightarrow m=\pm2\)
3)Điểm C(m;5-m2) nằm ở góc phần tư thứ nhất nên m;5-m2 dương
\(\Rightarrow0\le m\le2\)
bài 1
phương trình Ox có dạng: y=0x+0
để A thuộc Ox thì: 2m-3=0 x 2 +0
<=> m=3/2
2(m-1)x+3=2m-5
=>x(2m-2)=2m-5-3=2m-8
a: (1) là phương trình bậc nhất một ẩn thì m-1<>0
=>m<>1
b: Để (1) vô nghiệm thì m-1=0 và 2m-8<>0
=>m=1
c: Để (1) có nghiệm duy nhất thì m-1<>0
=>m<>1
d: Để (1) có vô số nghiệm thì 2m-2=0 và 2m-8=0
=>Ko có m thỏa mãn
e: 2x+5=3(x+2)-1
=>3x+6-1=2x+5
=>x=0
Khi x=0 thì (1) sẽ là 2m-8=0
=>m=4
a) Để hàm số là hàm bậc nhất thì 3 - m 0
m 3
b) Để hàm số là nghịch biến thì 3 - m < 0
m > 3
c) Thay tọa độ điểm A(2; -3) vào hàm số, ta được:
(3 - m).2 + 2 = -3
6 - 2m + 2 = -3
8 - 2m = -3
2m = 11
m = 11/2 (nhận)
Vậy m = 11/2 thì đồ thị hàm số đi qua A(2; -3)
(Sửa theo yêu cầu rồi nhé em!)
d) Thay tọa độ B(-1; -5) vào hàm số, ta được:
(2 - m).(-1) + 2 = -5
-2 + m + 2 = -5
m = -5 (nhận)
Vậy m = -5 thì đồ thị hàm số đi qua B(-1; -5)
a: Khi m=-5 thì pt sẽ là x^2-5x-6=0
=>x=6 hoặc x=-1
b:
Δ=(-5)^2-4(m-1)=25-4m+4=-4m+29
Để pt có hai nghiệm thì -4m+29>=0
=>m<=29/4
x1-x2=3
=>(x1-x2)^2=9
=>(x1+x2)^2-4x1x2=9
=>5^2-4(m-1)=9
=>4(m-1)=25-9=16
=>m-1=4
=>m=5(nhận)
c: 2x1-3x2=5 và x1+x2=5
=>x1=4 và x2=1
x1*x2=m-1
=>m-1=4
=>m=5(nhận)
Bài 9:
a: f(-4)=0
=>-4(m-1)+3m-1=0
=>-4m+4+3m-1=0
=>-m+3=0
=>m=3
b: f(-5)=-1
=>-5(m-1)+3m-1=-1
=>-5m+5+3m-1=-1
=>-2m+4=-1
=>-2m=-5
=>m=5/2
a) Để B là phân số thì m+3\(\ne\)0 và m\(\ne\)-3
b)Để B là 1 số nguyên thì 5\(⋮\)m+3
-->m+3 thuộc Ư(5)={1;5}
+,m+3=1
m=1-3
m= -2
+,m+3=5
m=5-3
m=2
Vậy m thuộc {-2;2}
\(B=\frac{5}{m+3}\left(m\ne-3\right)\)
Để B là phân số thì \(\frac{5}{m+3}\)là phân số
=> 5 không chia hết cho m+3
=> m+3 không thuộc ước của 5
Mà Ư(5)={-5;-1;1;5}
m+3 | -5 | -1 | 1 | 5 |
m | -8 | -4 | -2 | 2 |
Vậy B là phân số thì m khác: -8;-4;-2;2
b) \(B=\frac{5}{m+3}\left(m\ne-3\right)\)
Để B là số nguyên thì \(\frac{5}{m+3}\)là số nguyên
=> m+3 thuộc Ư (5) ={-5;-1;1;5}
Ta có bảng
m+3 | -5 | -1 | 1 | 5 |
m | -8 | -4 | -2 | 2 |
Vậy để B là số nguyên thì m=-8;-4;-2;2
\(\left(-5;0\right)\cap[2m-1;2m+7)\ne\varnothing\Rightarrow\left\{{}\begin{matrix}2m-1< 0\\2m+7>-5\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m< \dfrac{1}{2}\\m>-6\end{matrix}\right.\) \(\Rightarrow-6< m< \dfrac{1}{2}\)
Lời giải:
Để $(-5;0)\cap [2m-1; 2m+7)$ rỗng thì:
\(\left[\begin{matrix} 2m+7\leq -5\\ 2m-1\geq 0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} m\leq -6\\ m\geq \frac{1}{2}\end{matrix}\right.\)
Để $(-5;0)\cap [2m-1; 2m+7)$ khác rỗng thì:
\(m\in (-6; \frac{1}{2})\)