CMR : 3^2 + 3^3 + 3^4 + 3^5 +....+ 3^101 chia hết cho 120
giải chi tiết cho 1 tick
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(A=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}+\frac{101}{3^{101}}\)
\(\Rightarrow3\cdot A=3\cdot\left(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}+\frac{101}{3^{101}}\right)\)
\(\Rightarrow3\cdot A=3\cdot\frac{1}{3}+3\cdot\frac{2}{3^2}+3\cdot\frac{3}{3^3}+...+3\cdot\frac{100}{3^{100}}+3\cdot\frac{101}{3^{101}}\)
\(\Rightarrow3\cdot A=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}+\frac{101}{3^{100}}\)
\(\Rightarrow3\cdot A-A=\left(1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}+\frac{101}{3^{100}}\right)-\left(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}+\frac{101}{3^{101}}\right)\)
\(\Rightarrow2\cdot A=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}+\frac{101}{3^{100}}-\frac{1}{3}-\frac{2}{3^2}-\frac{3}{3^3}-...-\frac{100}{3^{100}}-\frac{101}{3^{101}}\)
\(\Rightarrow2\cdot A=1+\left(\frac{2}{3}-\frac{1}{3}\right)+\left(\frac{3}{3^2}-\frac{2}{3^2}\right)+...+\left(\frac{101}{3^{100}}-\frac{100}{3^{100}}\right)-\frac{101}{3^{101}}\)
\(\Rightarrow2\cdot A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}-\frac{101}{3^{101}}\)
Khi đặt \(S=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}\) thì ta sẽ có 2 điều:
- Điều 1: Khi đó:
\(2\cdot A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}-\frac{101}{3^{101}}\)
\(\Rightarrow2\cdot A=S-\frac{101}{3^{101}}\)
\(\Rightarrow2\cdot A< S\) ( 1 )
Điều 2: Khi đó:
\(S=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}\)
\(\Rightarrow3\cdot S=3\cdot\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}\right)\)
\(\Rightarrow3\cdot S=3\cdot1+3\cdot\frac{1}{3}+3\cdot\frac{1}{3^2}+...+3\cdot\frac{1}{3^{100}}\)
\(\Rightarrow3\cdot S=3+1+\frac{1}{3}+...+\frac{1}{3^{99}}\)
\(\Rightarrow3\cdot S-S=\left(3+1+\frac{1}{3}+...+\frac{1}{3^{99}}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}\right)\)
\(\Rightarrow2\cdot S=3+1+\frac{1}{3}+...+\frac{1}{3^{99}}-1-\frac{1}{3}-\frac{1}{3^2}-...-\frac{1}{3^{100}}\)
\(\Rightarrow2\cdot S=3+\left(1-1\right)+\left(\frac{1}{3}-\frac{1}{3}\right)+\left(\frac{1}{3^2}-\frac{1}{3^2}\right)+...+\left(\frac{1}{3^{99}}-\frac{1}{3^{99}}\right)-\frac{1}{3^{100}}\)
\(\Rightarrow2\cdot S=3+0+0+0+...+0-\frac{1}{3^{100}}\)
\(\Rightarrow2\cdot S=3-\frac{1}{3^{100}}\)
Do \(3-\frac{1}{3^{100}}< 3\) nên:
\(\Rightarrow2\cdot S< 3\)
\(\Rightarrow S< \frac{3}{2}\) ( 2 )
Từ ( 1 ) và ( 2 ), theo tính chất bắc cầu suy ra:
\(2\cdot A< \frac{3}{2}\)
\(\Rightarrow A< \frac{3}{2}:2\)
\(\Rightarrow A< \frac{3}{2\cdot2}\)
\(\Rightarrow A< \frac{3}{4}\) ( đpcm )
Mấy bạn làm hộ mình nha , bài khó quá không biết làm thế nào nữa.Xin trân thành cảm ơn nếu các bạn làm chi tiết.
Muốn chia hết cho 3 thì tổng các chữ số phải chia hết cho 3 ; có :
1 + 2 + 3 = 6
2 + 3 + 4 = 9
Từ một biểu thức trên có thể lập được : 1 x 3 = 3 ( số )
Nhưng nhờ tính chất lặp lại : 3 + 3 + 3 và 1 + 1 + 1 ; 2 + 2 + 2 ; 4 + 4 + 4 nên có thêm 6 số nữa
Có tất cả : 3 x 2 + 6 = 12 số
đ/s : 12 số
chtttttttttttttttttttttttttttttttttttttttttttttttttttt