với giá trị nào của số nguyên p, các pt sau có nghiệm nguyên chung :
\(3x^2-ax+p-2=0\) và \(x^2-2xp+5=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi x0 là nghiệm của hai pt đã cho
nên ta có : \(\int^{3x0^2-4x0+p-2=0\left(1\right)}_{x0^2-2px0+5=0\left(2\right)}\)
Từ (1) => p = \(2+4x0-3x0^2\) (*)
Từ (2) => \(p=\frac{x0^2+5}{20}\) (**)
Từ (*) và (**) => \(\frac{x0^2+5}{2x0}=2+4x0-3x0^2\)
<=> \(4x0+8x0^2-6x0^3=x0^2+5\)
<=> \(6x0^3-7x0^2-4x0+5=0\)
Giải pt tìm x0 thay vào tìm p , sau đó kiểm tra
Theo ht Viet :
\(\int^{x1+x2=\frac{\sqrt{85}}{4}}_{x1x2=\frac{21}{16}}\)
Xét \(x1^3-x2^3=\left(x1-x2\right)^3-3x1x2\left(x1-x2\right)\) (1)
(+) tính x1 - x2
TA có \(\left(x1-x2\right)^2=x1^2-2x1x2+x2^2=\left(x1+x2\right)^2-4x1x2=\left(\frac{\sqrt{85}}{4}\right)^2-4\left(\frac{21}{16}\right)\)
Rút gọn => x1 - x2 sau đó thay vào (1)
b) Xét a = 0 pt <=> x - 2 = 0 => x = 2 ( TM )
Xét a khác 0 pt là pt bậc 2
\(\Delta=\left(2a-1\right)^2-4a\left(a-2\right)=4a^2-4a+1-4a^2+8a=4a+1\)
LẬp luận như bài lần trước ta có a = n(n+1) với n nguyên
Giả sử x là nghiệm chung của 2 pt
ta có 2x2+(3k+1)*x-9=0 (1) và 6x2+(7k-1)x-19=0 (2)
ta có (1) *3 =6x2+3x(3k+1)-27=0
(3)-(2) = 9xk+3x-27-7kx+x+19=0
<=> 2x+xk-4=0 <=> x= 4/(2+k) (4)
(4) thay vào (1) giai ra k =2 va2/3
Vậy....................
b) Giả sử xo là một nghiệm chung của 2 PT> Khi đó ta có: \(\int^{x_0^2+x_0+a=0}_{x_0^2+ax_0+1=0}\)
Trừ 2 vế của 2 PT ta có: \(x_0\left(1-a\right)+a-1=0\Leftrightarrow\left(x_0-1\right)\left(1-a\right)=0\)<=> xo = 1 hoặc a = 1 (TM vì khi đó 2 PT tương đương)
xo = 1 => 1+1+a=0 => a=-2
với m> -4 thì đa thức co nghiệm là số hữu tỷ, không lẽ bn học trg chuyên mà không hiểu?