K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 1 2016

Gọi x0 là nghiệm của hai pt đã cho 

nên ta có : \(\int^{3x0^2-4x0+p-2=0\left(1\right)}_{x0^2-2px0+5=0\left(2\right)}\)

Từ (1) => p =  \(2+4x0-3x0^2\) (*)

Từ (2) => \(p=\frac{x0^2+5}{20}\) (**)

Từ (*) và (**) => \(\frac{x0^2+5}{2x0}=2+4x0-3x0^2\)

<=> \(4x0+8x0^2-6x0^3=x0^2+5\)

<=> \(6x0^3-7x0^2-4x0+5=0\)

Giải pt tìm x0 thay vào tìm p , sau đó kiểm tra 

24 tháng 1 2016

Nguyễn Huy Thắng umk

31 tháng 1 2016

Theo ht Viet :

\(\int^{x1+x2=\frac{\sqrt{85}}{4}}_{x1x2=\frac{21}{16}}\)

Xét \(x1^3-x2^3=\left(x1-x2\right)^3-3x1x2\left(x1-x2\right)\) (1) 

(+) tính x1  - x2 

TA có \(\left(x1-x2\right)^2=x1^2-2x1x2+x2^2=\left(x1+x2\right)^2-4x1x2=\left(\frac{\sqrt{85}}{4}\right)^2-4\left(\frac{21}{16}\right)\)

Rút gọn => x1 - x2 sau đó thay vào (1) 

31 tháng 1 2016

b) Xét a = 0 pt <=> x - 2 = 0 => x = 2 ( TM ) 

Xét a khác 0 pt là pt bậc 2 

\(\Delta=\left(2a-1\right)^2-4a\left(a-2\right)=4a^2-4a+1-4a^2+8a=4a+1\)

LẬp luận như bài lần trước ta có a = n(n+1) với n nguyên 

25 tháng 1 2016

Giả sử x là nghiệm chung của 2 pt 
ta có 2x2+(3k+1)*x-9=0   (1) và 6x2+(7k-1)x-19=0   (2)

ta có (1) *3 =6x2+3x(3k+1)-27=0

(3)-(2) = 9xk+3x-27-7kx+x+19=0

<=> 2x+xk-4=0 <=> x= 4/(2+k) (4)

 (4) thay vào (1) giai ra k =2 va2/3










Vậy....................

7 tháng 1 2016

b) Giả sử xo là một nghiệm chung của 2 PT> Khi đó ta có: \(\int^{x_0^2+x_0+a=0}_{x_0^2+ax_0+1=0}\)

Trừ 2 vế của 2 PT ta có: \(x_0\left(1-a\right)+a-1=0\Leftrightarrow\left(x_0-1\right)\left(1-a\right)=0\)<=> xo = 1 hoặc a = 1 (TM vì khi đó 2 PT tương đương)

 xo = 1 => 1+1+a=0 => a=-2

7 tháng 1 2016

a) Dễ thấy rằng 2 PT <=> nhau khi a=1

14 tháng 8 2016

(1-2m)2 - 4m(m-2) >0

1-4m +4m2-4m2 +8m >0

4m +1 >0

m > -1/4

14 tháng 8 2016

với m> -4 thì đa thức co nghiệm là số hữu tỷ, không lẽ bn học trg chuyên mà không hiểu?