Cho a,b là các số thực dương thỏa mãn a 2 b = 5 tính K = 2 a 6 b − 4
A. K=226
B. K=246
C. K=242
D. K=202
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$a^2+b^2+c^2+6=2(a+2b+c)$
$\Leftrightarrow (a^2-2a+1)+(b^2-4b+4)+(c^2-2c+1)=0$
$\Leftrightarrow (a-1)^2+(b-2)^2+(c-1)^2=0$
Vì $(a-1)^2\geq 0; (b-2)^2\geq 0; (c-1)^2\geq 0$ với mọi $a,b,c\in\mathbb{R}$ nên để tổng của chúng bằng $0$ thì:
$(a-1)^2=(b-2)^2=(c-1)^2=0$
$\Rightarrow a=c=1; b=2$
$\Rightarrow K=3$
Đáp án C.
Cho a,b,c là các số thực dương thỏa mãn a+b+c = 3
Chứng minh rằng với mọi k > 0 ta luôn có....
.
Cho a,b,c là các số thực dương thỏa mãn a+b+c = 3
Chứng minh rằng với mọi k > 0 ta luôn có
1
Áp dụng BĐT Cauchy cho 2 số dương:
4ac=2.b.2c≤2(b+2c2)2≤2(a+b+2c2)2=2.(12)2=12
⇒−4bc≥−12
⇒K=ab+4ac−4bc≥−4bc≥−12
Đáp án B
Ta có K = 2 a 6 b − 4 = 2 2 2 b 3 − 4 = 2.5 3 − 4 = 246