K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 1 2016

a) S=1-3+3^2-3^3+...+3^98-3^99

S=(1-3+3^2-3^3)+(3^4-3^5+3^6-3^7)+...+(3^96-3^97+3^98-3^99)

S=-20+3^4(1-3+3^2-3^3)+...+3^96(1-3+3^2+3^3)

S=-20+3^4(-20)+...+3^96(-20)

S=-20(1+3^4+...+3^96)

=>S chia hết cho -20

b) S=1-3+3^2-3^3+...+3^98-3^99

3S=3(1-3+3^2-3^3+...+3^98-3^99)

3S=3-3^2+3^3-3^4+...+3^99-3^100

3S+S=(3-3^2+3^3-3^4+...+3^99-3^100)+(1-3+3^2-3^3+..+3^98-3^99)

4S=1-3^100

S=(1-3^100)/4

=>1-3^100 chia hết cho 4 (vì z là số nguyên)

=>3^100-1 chia hết cho 4

=>3^100 chia 4 dư 1

23 tháng 6 2023

  a,

S  =     1 -  3 + 32 - 33+...+398 - 399

S  =   30 - 31 + 32 - 33+...+ 398 - 399

xét dãy số: 0; 1; 2; 3;...;99 

Dãy số trên là dãy số cách đều với khoảng cách là: 1 - 0 = 1

Dãy số trên có số số hạng là: (99 - 0): 1 + 1 = 100 (số)

100 : 4 = 25

Vậy ta nhóm 4 số hạng liên tiếp của tổng S thành 1 nhóm thì: 

S = ( 1 - 3 + 32 - 33) +....+( 396 - 397 + 398 - 399)

S = - 20+...+ 396.(1 - 3 + 32 - 33)

S = - 20 +...+ 396.(-20)

S = -20.( 30 + ...+ 396) (đpcm)

b,

  S           = 1 - 3 + 32 - 33+...+ 398 - 399

3S          =      3  - 32 + 33-...-398  + 399 - 3100

3S + S   =    - 3100 + 1

4S        = - 3100 + 1 

 S        = ( -3100 + 1): 4

S        = - ( 3100 - 1) : 4

Vì S là số nguyên nên 3100 - 1 ⋮ 4 ⇒ 3100 : 4 dư 1 (đpcm)

 

tích mình với

ai tích mình 

mình tích lại

thanks nhiều

28 tháng 7 2018

k mk đi mk sẽ k lại

17 tháng 1 2016

a/ta có:s=(1-3+32-33)+.................+(396-397+398-399)

=-20+.....................+396.(-20.(1+...................396))

suy ra s chia het cho -20

b/ 3s=3-32+33-34+.................+399-3100

3s+s=(3-32+33-34+..........................+399-3100 +(1-3+32-33)+............+398-399)

4s=1-3100

s=(1-3100):4

​vì s chia hết cho -20 suy ra s chia hết cho 4 suy ra 1-3100 chia hêt cho 4 suy ra 3100:4 dư 1

nếu đúng thì tíc cho mình 2 cái nhé!

 

30 tháng 9 2018

Ta có:

\(1+3+3^2+3^3+...+3^{99}\)

\(\Rightarrow3S=3+3^2+3^3+3^4+...+3^{99}+3^{100}\)

\(\Rightarrow3S-S=\left(3+3^2+3^3+...+3^{100}\right)-\left(1+3+3^2+...+3^{99}\right)\)

\(\Rightarrow2S=3^{100}-1\)

\(\Rightarrow2S+1=3^{100}-1+1=3^{100}\)

\(\Rightarrow2S+1\) là lũy thừa của 3