Một khách sạn có 6 phòng đơn. Có 10 khách đến thuê phòng, trong đó có 6 nam và 4 nữ. Người quản lí chọn ngẫu nhiên 6 người. Tính xác suất để có 4 khác nam, 2 khách nữ.
A. 1 7
B. 5 7
C. 3 7
D. 4 7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt giá phòng là x. Thu nhập f(x)
bài toán được phát biểu lại dưới dạng thuần túy Toán học như sau:
Tìm x sao cho f(x) lớn nhất biết rằng khi x = 400 thì f(400) = 400x50, mỗi khi x tăng thêm 20 đơn vị thì f(x+20k) = (x+20k)x(50-2k).
Giá đã tăng: x - 400 (ngàn đồng).
Số phòng cho thuê giảm nếu giá là x:
Số phòng cho thuê với giá x là:
Trả lời câu 1: Thay giá trị x = 500 vào biểu thức trên ta được giá trị cần tìm là 40.
Doanh thu là: f(x) =
Trả lời câu 2: Thế f(x) = 20200 vào phương trình trên, giải phương trình bậc hai, ta được x = 427,64 hoặc x= 472,36
f’(x)=
f’’(x)= -1/5
f’(x) = 0, tương đương x = 450.
và f’’(450) = -1/5< 0
Trả lời câu 3: Theo trên thì x = 450 là cực đại và là cực trị duy nhất.
Tuấn Anh Phan Nguyễn
Đặt giá phòng là x. Thu nhập f(x)
Bài toán được phát biểu lại dưới dạng thuần túy toán học như sau:
Tìm x sao cho f(x) lớn nhất biết rằng khi x = 400 thì f(400) = 400x50, mỗi khi x tăng thêm 20 đơn vị thì f(x+20k) = (x+20k)x(50-2k).
Giá đã tăng: x - 400 (ngàn đồng).
Số phòng cho thuê giảm nếu giá là x:
Số phòng cho thuê với giá x là:
Trả lời câu 1: Thay giá trị x = 500 vào biểu thức trên ta được giá trị cần tìm là 40.
Doanh thu là: f(x) =
Trả lời câu 2: Thế f(x) = 20200 vào phương trình trên, giải phương trình bậc hai, ta được x = 427,64 hoặc x= 472,36
f’(x)=
f’’(x)= -1/5
f’(x) = 0, tương đương x = 450.
và f’’(450) = -1/5< 0
Trả lời câu 3: Theo trên thì x = 450 là cực đại và là cực trị duy nhất.
Số cách chọn một người trong đoàn là: 31.
Số người đến từ Hà Nội hoặc đến từ Hải Phòng là: 7 + 5 = 12.
Vậy xác suất để người đó đến từ Hà Nội hoặc đến từ Hải Phòng là \(\dfrac{12}{31}\).
Số cách chọn người đến từ Hà Nội hoặc đến từ Hải Phòng là:
7+5=12(cách)
Xác suất chọn người đến từ Hà Nội hoặc đến từ Hải Phòng là:
P=12/31
Chọn D
Số phần tử của không gian mẫu là: .
Gọi A là biến cố “chọn được 4 đại biểu sao cho mỗi Quốc gia đều có ít nhất 1 đại biểu và có cả đại biểu nam và nữ.”
Trường hợp 1: có 2 đại biểu Việt Nam, 1 đại biểu Mỹ, 1 đại biểu Anh.
Số cách chọn ra 4 đại biểu có cả đại biểu nam và đại biểu nữ thỏa mãn trường hợp 1 là: cách chọn.
Trường hợp 2: Có 1 đại biểu Việt Nam, 2 đại biểu Mỹ,1 đại biểu Anh.
Số cách chọn ra 4 đại biểu có cả đại biểu nam và đại biểu nữ thỏa mãn trường hợp 2 là:
Trường hợp 3: Có 1 đại biểu Việt Nam, 1 đại biểu Mỹ, 2 đại biểu Anh.
Số cách chọn ra 4 đại biểu có cả đại biểu nam và đại biểu nữ thỏa mãn trường hợp 3 là: .
Nên tổng số cách chọn thỏa mãn yêu cầu là: 581 + 678 + 678 = 1937.
Vậy xác suất của biến cố A là: .
Chọn C