Làm tính chia phân thức:
4 x + 12 x + 4 2 : 3 x + 3 x + 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu 1:
x3-1+3x2-3x =(x-1)(x^2+x+1)+3x(x-1)=(x-1)(x^2+x+1+3x)=(x-1)(x^2+4x=1)
Câu 2 :
a) \(\left(x^4-2x^3+2x-1\right):\left(x^2-1\right)\)
\(=\left(x^4-x^2-2x^3+2x+x^2-1\right):\left(x^2-1\right)\)
\(=\left[x^2\left(x^2-1\right)-2x\left(x^2-1\right)+\left(x^2-1\right)\right]:\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left(x^2-2x+1\right):\left(x^2-1\right)\)
\(=x^2-2x+1\)
b) \(\left(x^6-2x^5+2x^4+6x^3-4x^2\right):6x^2\)
\(=\frac{1}{6}x^4-\frac{1}{3}x^3+\frac{1}{3}x^2+x-\frac{2}{3}\)
Câu 3 :
Sửa đề :
\(\frac{3x^2+6x+12}{x^3-8}=\frac{3\left(x^2+2x+4\right)}{\left(x-2\right)\left(x^2+2x+4\right)}=\frac{3}{x-2}\)
ĐK: x#0; x#-1
\(\frac{x^4}{1-x}\)+ x3 + x2 + 1
= \(\frac{x^4}{1-x}\)+ \(\frac{x^3\left(1-x\right)}{1-x}\)+ \(\frac{x^2\left(1-x\right)}{1-x}\)+ \(\frac{1-x}{1-x}\)
= \(\frac{x^4+x^3-x^4+x^2-x^3+1-x}{1-x}\)
= \(\frac{x+1}{1-x}\)
a) Áp dụng quy tắc chia hai phân thức và rút gọn ta có kết quả là 3 ( 1 + 3 x ) 1 ( x + 4 )
b) Tương tự a), ta tính được kết quả là y + 2 y − 1
Bài 1:
a: \(x=\dfrac{2}{3}:\dfrac{3}{5}=\dfrac{2}{3}\cdot\dfrac{5}{3}=\dfrac{10}{9}\)
b: \(x=\dfrac{17}{8}:\dfrac{7}{17}=\dfrac{17}{8}\cdot\dfrac{17}{7}=\dfrac{289}{56}\)
c: \(x=-\dfrac{3}{4}:\dfrac{7}{12}=\dfrac{-3}{4}\cdot\dfrac{12}{7}=\dfrac{-63}{28}=-\dfrac{9}{4}\)
d: \(\Leftrightarrow x\cdot\dfrac{1}{6}=\dfrac{3}{8}-\dfrac{1}{4}=\dfrac{1}{4}\)
hay \(x=\dfrac{1}{4}:\dfrac{1}{6}=\dfrac{3}{2}\)
e: \(\Leftrightarrow\dfrac{1}{2}:x=-4-\dfrac{1}{3}=-\dfrac{17}{3}\)
hay \(x=-\dfrac{1}{2}:\dfrac{17}{3}=\dfrac{-3}{34}\)