cho tam giác abc , biết AB=5cm góc B=40 độ góc C=60 độ tính BC,AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: \(\cos70^0=\dfrac{AB^2+BC^2-AC^2}{2\cdot AB\cdot BC}\)
\(\Leftrightarrow48,68-AC^2=13,57\)
hay \(AC=5,93\left(cm\right)\)
bài 2:
ta có: AB<AC<BC(Vì 3cm<4cm<5cm)
=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)
Bài 3:
*Xét tam giác ABC, có:
góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)
hay góc A+60 độ +40 độ=180độ
=> góc A= 180 độ-60 độ-40 độ.
=> góc A=80 độ
Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)
=> BC>AC>AB( Các cạnh và góc đối diện trong tam giác)
bài 2:
ta có: AB <AC <BC (Vì 3cm <4cm <5cm)
=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)
Bài 3:
*Xét tam giác ABC, có:
góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)
hay góc A+60 độ +40 độ=180độ
=> góc A= 180 độ-60 độ-40 độ.
=> góc A=80 độ
Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)
=> BC>AC>AB( Các cạnh và góc đối diện trong tam giác)
HT mik làm giống bạn Dương Mạnh Quyết
1.
Kẻ đường cao CH
Xét tam giác vuông HCB,ta có:
góc B + góc C1 =900
600 + góc C1 =900
=> góc C1 = 300 => góc C2 =100
Áp dụng hệ thức cạnh và góc trong tam giác vuông CBH và tam giác vuông CAH,ta có:
HB= BC x cot góc B = 9 x cot 600 = 3√3 (cm)
=>HC=BC2 - HB2 =92 - (3√3)2 = 3√6 (cm) (Đinh lí Py-ta-go)
AH= HC x tan góc C2 = 3√6 x tan 100 =1,3 (cm)
Ta có: AB = AH + HB nên AB = AH + HB =6,49 (cm)
AC = AH : sin góc C2 = 7,49 (cm)
Vậy AB = 6,49 cm ; AC = 7,49 cm
2.
Kẻ đường cao AH.
Áp dụng hệ thức cạnh và góc trong tam giác vuông ABH,ta có:
BH = AB x cos góc B = 3,2 x cos 700 = 1,09 (cm)
AH= BH x tan góc B =1,09 x tan 700 = 2,99 (cm)
Ta có : BC - BH = HC
=> HC = 6,2 - 2,99 = 3,21 (cm)
Áp dụng định lí Py-ta-go vào tam giác vuông AHC,ta có:
AC2 = AH2 +HC2 = (2,99)2 +(3,21)2 =>AC= 4,39 (cm)
Vậy AC = 4,39 cm.
Sai có gì góp ý với tui nha
AB = BH . BC = 9.BH
mà BH = \(\dfrac{1}{2}AB\) => AB = 4,5 . AB
=> AB= 4,5
=> BH = 2,25 => HC = 6,75
Tam giác ABH vuông tại H =>AH=\(\dfrac{9\sqrt{3}}{4}\)
Tam giác AHC vuông tại H => AC=\(\dfrac{9\sqrt{3}}{2}\)
a: \(\cos BAC=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}=\dfrac{5-BC^2}{2\cdot1\cdot2}=\dfrac{5-BC^2}{4}\)
\(\Leftrightarrow\dfrac{5-BC^2}{4}=\dfrac{-1}{2}\)
\(\Leftrightarrow5-BC^2=-2\)
\(\Leftrightarrow BC=\sqrt{7}\left(cm\right)\)
b: \(\cos BAC=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}=\dfrac{125-BC^2}{100}\)
\(\Leftrightarrow125-BC^2=50\)
hay \(BC=5\sqrt{3}\left(cm\right)\)
c: \(\cos BAC=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}=\dfrac{7-BC^2}{8\sqrt{3}}\)
\(\Leftrightarrow7-BC^2=4\sqrt{3}\)
hay \(BC=2-\sqrt{3}\left(cm\right)\)
A B C H
Kẻ \(AH\perp BC\)
Xét \(\Delta ABH\)vuông tại H có \(\widehat{B}=60^o\)\(\Rightarrow\widehat{BAH}=90^o-60^o=30^o\)
Áp dụng nhận xét: trong 1 tam giác vuông, cạnh đối diện với góc \(30^o\)bằng \(\frac{1}{2}\)cạnh huyền
Ta có: \(\Delta ABH\)vuông tại H có \(\widehat{BAH}=30^o\)
\(\Rightarrow BH=\frac{1}{2}AB=\frac{1}{2}.5=2,5\)( cm )
\(\Rightarrow CH=BC-BH=8-2,5=5,5\)( cm )
Xét \(\Delta ABH\)vuông tại H \(\Rightarrow AH^2+BH^2=AB^2\)
\(\Rightarrow AH^2=AB^2-BH^2=5^2-2,5^2=18,75\)
Xét \(\Delta ACH\)vuông tại H \(\Rightarrow AH^2+HC^2=AC^2\)
\(\Rightarrow AC^2=18,75+5,5^2=18,75+30,25=49\)
\(\Rightarrow AC=7cm\)
Vậy \(AC=7cm\)