Tìm x thuộc Z biết:
(x+1)+(x+3)+(x+5)+....................+(x+99)=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x+1)+(x+3)+...+(x+99)=0
Tổng các số hạng là: (99+1):2=50 (số hạng)
=> (x+1)+(x+3)+...+(x+99)=0 <=> 50.x+(1+3+5+...+99) = 0
<=> 50.x+\(\frac{\left(99+1\right).50}{2}\)=0 <=> 50.x+2500=0 => x=-2500/50=-50
Ta có:(x+1)+(x+2)+...+(x+99)=0
=>[(x+99)+(x+1)].(x+99):2=0
=> 2x+100 .(x+99):2=0
=> 2x+100 =0 (*)
=> 2x =0-100= -100
=> x = (-100):2
=> x = -50
(Giải thích(*):vì (x+99):2\(\ne\)0(vì x+99 \(\ne\)0) mà một số m nhân cho n khác 0 mà bàng 0 thì suy ra m=0,từ đó ta kết luận 2x+100=0)
Ta có;(x+x+x+......+x)+(1+2+3+4+.......+99)=0
(99x) + 4950 =0
99x =0-4950
x = -4950/99
x =-50
a) (x2+1)(x-5)=0
\(\Rightarrow\orbr{\begin{cases}x^2+1=0\\x-5=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\Phi\\x=5\end{cases}}\)
Vậy x=5
b) 5x.x2+1=6
5x.x2=6-1
5x.x2=5
x.x2=5:5
x3=1
=> x=1
c) \(\left|x\right|\le2\)
=> x={2,1,0,-1,-2,....}
d) (x+1)+(x+3)+(x+5)+...+(x+99)=0
(x+x+x+...+x)+(1+3+5+...+99)=0
50x+2500=0
=> 50x=2500
=> x=50
(x+1)+ (x+3) + (x+5)+.....+(x+99) = 0
x+1 + x+3 +x+5 +....+x+99 =0
Có số số hạng x là : (99-1):2+1= 50 số
Ta có: 50x + ( 1+3+5+...+99) = 0
Đặt A= 1+3+5+...+99
Tổng A là: (99+1).50:2= 2500
=> 50x + 2500 = 0
50x = 0-2500
50x= -2500
x= -2500 :50
x= -50
Vậy...
a) xy - 3x =-19
x(y-3) = -19
=> y-3 \(\in\)Ư(-19) ={ 1; 19; -19 ; -1}
=> y \(\in\){ 4; 22; -16; 2}
Sau bn lập bảng tìm x nha
b) 3x + 4y - xy = 16
3x + y(4-x) =16
12 - [ 3x+ y(4-x)] =12-16
12 - 3x - y(4-x)= -4
3(4-x)- y(4-x) = -4
(3-y) ( 4-x) =-4
Sau bn lập bảng tìm xy nha
Nguồn phần b là của bn Tài nha :>
Bài 1 :
\(\left(x+1\right)+\left(x+3\right)+\left(x+5\right)+...+\left(x+99\right)=0\)
Có tất cả các số số hạng là : \(\left(99-1\right)\div2+1=50\) ( số )
\(x+1+x+3+x+5+...+x+99=0\)
\(x+x+...+x+1+3+...+99=0\)
\(\left(x\times50\right)+\left[\left(99+1\right)\times50\div2\right]=0\)
\(\left(x\times50\right)+\left(100\times50\div2\right)=0\)
\(\left(x\times50\right)+\left(5000\div2\right)=0\)
\(\left(x\times50\right)+2500=0\)
\(x\times50=0-2500\)
\(x\times50=-2500\)
\(x=-2500\div50\)
\(x=-50\)
Bài 2 :
a ) \(xy-3x=-19\)
\(\Leftrightarrow\)\(x,y\inℤ\)và \(y-3\) \(\inƯ\)\(\left(-19\right)\)\(\in\)\(\left\{1;-1;19;-19\right\}\)
Ta có bảng sau
x | - 19 | 19 | - 1 | 1 |
y - 3 | 1 | - 1 | 19 | - 19 |
y | 4 | 2 | 22 | - 16 |
Vậy \(\left(x;y\right)\) \(\in\) \(\left\{\left(-19;4\right);\left(19;2\right);\left(-1;22\right);\left(1;-16\right)\right\}\)
b ) \(3x+4y-xy=16\)
\(\Leftrightarrow3x+4y-xy-12=16-12\)
\(\Leftrightarrow\left(3x-xy\right)+\left(4y-12\right)=4\)
\(\Leftrightarrow x\left(3-y\right)+4\left(-y\right)+3=4\)
\(\Leftrightarrow\left(3-y\right)\left(x+4\right)=4\)
\(\Leftrightarrow\)\(x;y\)\(\inℤ\)\(\Rightarrow\)\(3-y\) và \(x+4\)\(\in\)\(Ư\)\(\left(4\right)\)=
Ta có bảng sau :
x + 4 | 1 | - 1 | 2 | - 2 | 4 | - 4 |
x | - 3 | - 5 | - 2 | - 6 | 0 | - 8 |
y - 3 | 4 | - 4 | 2 | - 2 | 1 | - 1 |
y | 7 | - 1 | 5 | 1 | 4 | 2 |
Vậy \(\left(x;y\right)\)\(\in\)\(\left\{\left(-3;7\right);\left(-5;-1\right);\left(-2;5\right);\left(-6;1\right);\left(0;4\right);\left(-8;2\right)\right\}\)
a, \(x\) + (\(x\) + 2) + (\(x\) + 4) + (\(x\) + 6) + .... + (\(x\) + 98) = 0
Xét dãy số: 0; 2; 4; 6; ...; 98
Dãy số trên là dãy số cách đều với khoảng cách là: 2 - 0 = 2
Số số hạng của dãy số là: (98 - 0) : 2 + 1 = 50
(\(x\) + 98 + \(x\)) \(\times\) 50 : 2 = 0
(2\(x\) + 98) x 25 = 0
2\(x\) + 98 = 0
2\(x\) = - 98
\(x\) = - 98 : 2
\(x\) = - 49
(x+1)+(x+3)+(x+5)+....................+(x+99)=0
=>x+1+x+3+x+5+...+x+99=0
=>(x+x+x+....+x)+(1+3+5+...+99)=0
=>50x+(1+99).50/2=0
=>50x+2500=0
=>50x=-2500
=>x=-50
x + 1 +x + 3 + ...... + x + 99 = 0
50x = -2500
x = -50