K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2017

cos3x – cos5x = sinx ⇔ sinx(1 – 2sin4x) = 0

Giải sách bài tập Toán 11 | Giải sbt Toán 11

NV
15 tháng 9 2020

a/

\(\Leftrightarrow2sin4x.cos3x=2sin7x.cos3x\)

\(\Leftrightarrow\left[{}\begin{matrix}cos3x=0\\sin7x=sin4x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}3x=\frac{\pi}{2}+k\pi\\7x=4x+k2\pi\\7x=\pi-4x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+\frac{k\pi}{3}\\x=\frac{k2\pi}{3}\\x=\frac{\pi}{11}+\frac{k2\pi}{11}\end{matrix}\right.\)

b.

\(\Leftrightarrow2cos4x.cosx=2cos8x.cosx\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\cos8x=cos4x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\8x=4x+k2\pi\\8x=-4x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\x=\frac{k\pi}{2}\\x=\frac{k\pi}{6}\end{matrix}\right.\) \(\Leftrightarrow x=\frac{k\pi}{6}\)

26 tháng 7 2019

\( 2)\sin x + \sin 2x + \sin 3x = 0\\ \Leftrightarrow 2\sin 2x.\cos x + \sin 2x = 0\\ \Leftrightarrow \sin 2x\left( {2\cos x + 1} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l} \sin 2x = 0\\ 2\cos x + 1 = 0 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} 2x = k\pi \\ \cos x = \dfrac{{ - 1}}{2} \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = \dfrac{{k\pi }}{2}\\ x = \pm \dfrac{{2\pi }}{3} + k2\pi \end{array} \right.\left( {k \in \mathbb{Z} } \right) \)

26 tháng 7 2019

\( 3)\sin x + \sin 2x + \sin 3x + \sin 4x = 0\\ \Leftrightarrow \left( {\sin x + \sin 4x} \right) + \left( {\sin 2x + \sin 3x} \right) = 0\\ \Leftrightarrow 2\sin \dfrac{{5x}}{2}.\cos \dfrac{{3x}}{2} + 2\sin \dfrac{{5x}}{2}.\cos \dfrac{x}{2} = 0\\ \Leftrightarrow \sin \dfrac{{5x}}{2}.\left( {\cos \dfrac{{3x}}{2} + \cos \dfrac{x}{2}} \right) = 0\\ \Leftrightarrow \sin \dfrac{{5x}}{2}.2\cos x.\cos \dfrac{x}{2} = 0\\ \Leftrightarrow \left[ \begin{array}{l} \sin \dfrac{{5x}}{2} = 0\\ 2\cos x = 0\\ \cos \dfrac{x}{2} = 0 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = \dfrac{{2k\pi }}{5}\\ x = \dfrac{\pi }{2} + k\pi \\ x = \pi + 2k\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right) \)

4 tháng 7 2017

18 tháng 9 2018

Đáp án C

1 tháng 6 2021

1.

\(sinx-\sqrt{2}cos3x=\sqrt{3}cosx+\sqrt{2}sin3x\)

\(\Leftrightarrow sinx-\sqrt{3}cosx=\sqrt{2}cos3x+\sqrt{2}sin3x\)

\(\Leftrightarrow\dfrac{1}{2}sinx-\dfrac{\sqrt{3}}{2}cosx=\dfrac{1}{\sqrt{2}}cos3x+\dfrac{1}{\sqrt{2}}sin3x\)

\(\Leftrightarrow sin\left(x-\dfrac{\pi}{3}\right)=sin\left(3x+\dfrac{\pi}{4}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{3}=3x+\dfrac{\pi}{4}+k2\pi\\x-\dfrac{\pi}{3}=\pi-3x-\dfrac{\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{7\pi}{24}-k\pi\\x=-\dfrac{3}{4}x+\dfrac{13\pi}{48}+\dfrac{k\pi}{2}\end{matrix}\right.\)

Vậy phương trình đã cho có nghiệm \(x=-\dfrac{7\pi}{24}-k\pi;x=-\dfrac{3}{4}x+\dfrac{13\pi}{48}+\dfrac{k\pi}{2}\)

1 tháng 6 2021

2.

\(sinx-\sqrt{3}cosx=2sin5\text{​​}x\)

\(\Leftrightarrow\dfrac{1}{2}sinx-\dfrac{\sqrt{3}}{2}cosx=sin5x\)

\(\Leftrightarrow sin\left(x-\dfrac{\pi}{3}\right)=sin5x\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{3}=5x+k2\pi\\x-\dfrac{\pi}{3}=\pi-5x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{12}-\dfrac{k\pi}{2}\\x=\dfrac{2\pi}{9}+\dfrac{k\pi}{3}\end{matrix}\right.\)

Vậy phương trình đã cho có nghiệm \(x=-\dfrac{\pi}{12}-\dfrac{k\pi}{2};x=\dfrac{2\pi}{9}+\dfrac{k\pi}{3}\)

NV
1 tháng 8 2021

ĐKXĐ: ...

\(sin3x-cos3x+sinx+cosx=\dfrac{sin3x-cos3x+sinx+cosx}{\left(sin3x+cosx\right)\left(cos3x-sinx\right)}\)

\(\Rightarrow\left[{}\begin{matrix}sin3x-cos3x+sinx+cosx=0\left(1\right)\\\left(sin3x+cosx\right)\left(cos3x-sinx\right)=1\left(2\right)\end{matrix}\right.\)

(1) \(\Leftrightarrow3sinx-4sin^3x-4cos^3x+3cosx+sinx+cosx=0\)

\(\Leftrightarrow sinx+cosx+sin^3x+cos^3x=0\)

\(\Leftrightarrow sinx+cosx+\left(sinx+cosx\right)\left(1-sinx.cosx\right)=0\)

\(\Leftrightarrow\left(sinx+cosx\right)\left(2-sinx.cosx\right)=0\)

\(\Leftrightarrow sinx+cosx=0\) (loại)

(2) \(\Leftrightarrow sin3x.cos3x-sinx.cosx-sin3x.sinx+cos3x.cosx=1\)

\(\Leftrightarrow\dfrac{1}{2}sin6x-\dfrac{1}{2}sin2x+cos4x=1\)

\(\Leftrightarrow\dfrac{1}{2}\left(3sin2x-4sin^32x\right)-\dfrac{1}{2}sin2x+1-2sin^22x=1\)

\(\Leftrightarrow sin2x-2sin^32x-2sin^22x=0\)

\(\Leftrightarrow-sin2x\left(2sin^22x+2sin2x-1\right)=0\)

\(\Leftrightarrow...\)

17 tháng 5 2017

\(\cos3x-\cos5x=\sin x\Leftrightarrow\sin x\left(1-2\sin4x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sin x=0\\\sin4x=\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi,k\in\mathbb{Z}\\x=\dfrac{\pi}{24}+k\dfrac{\pi}{2},k\in\mathbb{Z}\\x=\dfrac{5\pi}{24}+k\dfrac{\pi}{2},k\in\mathbb{Z}\end{matrix}\right.\)

NV
20 tháng 9 2020

c/

\(\Leftrightarrow\frac{1}{2}-\frac{1}{2}cos2x+\frac{1}{2}-\frac{1}{2}cos6x=1-cos4x\)

\(\Leftrightarrow cos6x+cos2x-2cos4x=0\)

\(\Leftrightarrow2cos4x.cos2x-2cos4x=0\)

\(\Leftrightarrow2cos4x\left(cos2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos4x=0\\cos2x=1\end{matrix}\right.\) \(\Leftrightarrow...\)

NV
20 tháng 9 2020

a/

\(\Leftrightarrow1+cos2x+cos3x+cosx=0\)

\(\Leftrightarrow2cos^2x+2cos2x.cosx=0\)

\(\Leftrightarrow2cosx\left(cosx+cos2x\right)=0\)

\(\Leftrightarrow2cosx\left(2cos^2x+cosx-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\cosx=-1\\cosx=\frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow...\)

b/

\(\Leftrightarrow2sin3x.cosx+sin3x=2cos3x.cosx+cos3x\)

\(\Leftrightarrow sin3x\left(2cosx+1\right)-cos3x\left(2cosx+1\right)=0\)

\(\Leftrightarrow\left(sin3x-cos3x\right)\left(2cosx+1\right)=0\)

\(\Leftrightarrow\sqrt{2}sin\left(3x-\frac{\pi}{4}\right)\left(2cosx+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin\left(3x-\frac{\pi}{4}\right)=0\\cosx=-\frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow...\)