Chứng minh rằng vi phân dy và số gia Δy của hàm số y = ax + b trùng nhau.
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
14 tháng 5 2022
y = ax + b ⇒ y′ = a và dy = adx = aΔx;
Δy = a(x + Δx) + b − [ax + b] = aΔx..
Vậy dy = Δy.
3 tháng 12 2021
Để hai đường thẳng trùng nhau thì \(\hept{\begin{cases}a=2-b\\b=a-4\end{cases}}\Leftrightarrow\hept{\begin{cases}b=2-a\\b=a-4\end{cases}}\Leftrightarrow\hept{\begin{cases}2-a=a-4\\b=a-4\end{cases}}\Leftrightarrow\hept{\begin{cases}2a=6\\b=a-4\end{cases}}\Leftrightarrow\hept{\begin{cases}a=3\\b=3-4=-1\end{cases}}\)
Vậy để đồ thị của hai hàm số đã cho là hai đường thẳng trùng nhau thì \(a=3;b=-1\)
PT
1
PT
1
PT
1
PT
1
y = ax + b ⇒ y′ = a và dy = adx = aΔx;
Δy = a(x + Δx) + b − [ax + b] = aΔx..
Vậy dy = Δy.