K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: góc BHD+góc BMD=180 độ

=>BHDM nội tiếp

b: BHDM nội tiếp

=>góc HDM+góc HBM=180 độ

=>góc ADM=góc ABC

=>góc ADM=góc ADC

=>DA là phân giáccủa góc MDC

c: Xét tứ giác DHNC có

góc DHC=góc DNC=90 độ

=>DHNC nội tiếp

=>góc NHD=góc NDC

góc NHD+góc MHD

=180 độ-góc NCD+góc MBD

=180  độ+180 độ-góc ABD-góc ACD

=180 độ

=>M,H,N thẳng hàng

4 tháng 3 2022

undefined

5 tháng 3 2022

củm ơn pẹn 

5 tháng 6 2019

bạn tự vẽ hình nhé !

                                                                    Giải

a,Ta có :\(\widehat{BAB'}=\widehat{AB'A'}=\widehat{B'A'B}=1v\)( nội tiếp nửa đường tròn )

\(\Rightarrow ABA'B'\)là hình chữ nhật

b, Ta có : BH // CA' (cùng vuông góc với AC )

               BA' // CH ( cùng vuông góc với AB )

\(\Rightarrow BHCA'\)là hình bình hành nên BH = CA' 

 c, \(\Delta BHC=\Delta BA'C\)nên đường tròn ngoại tiếp tam giác BHC bằng đường tròn ngoại tiếp tam giác BA'C

Mà đường tròn ngoại tiếp tam giác BA'C chính là đường tròn (O)

Vậy bán kính đường tròn ngoại tiếp tam giác BHC bằng R

 a) tứ giác ABA'B' có AA', BB' là hai đương chéo bằng nhau ( = 2R) 
=> ABA'B' là hình chữ nhật. 

b) ta có : 
CH _I_ AB ( H là trực tâm của tam giác ABC ) 
A'B _I_ AB ( ABA' chắn nửa đường tròn ) 
=> CH // A'B (1) 
Lại có : 
BH _I_ AC ( H là trực tâm của tam giác ABC ) 
A'C _I_ AC ( ACA' chắn nửa đường tròn ) 
=> A'C // BH (2) 
(1),(2) => BHCA' là hình bình hành 
=> BH=CA' 

c) kéo dài AH cắt đường tròn ngoại tiếp ABC tại D. Dễ dàng nhận thấy D và H đối xứng nhau qua BC ---> tam giác BCD = tam giác BCH --> đường tròn ngoại tiếp BCH = đường tròn ngoại tiếp BCD (đồng thời ngoại tiếp ABC) --> bán kính đường tròn ngoại tiếp BHC = R