Tính tổng S = 1 2 . 5 + 1 5 . 8 + 1 8 . 11 + 1 11 . 14 + . . . + 1 97 . 100
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(S=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{17.20}=\frac{1}{3}\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+..+\frac{3}{17.20}\right)=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{17}-\frac{1}{20}\right)=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{20}\right)=\frac{1}{3}.\frac{9}{20}=\frac{3}{20}\)
Vậy \(S=\frac{3}{20}\)
\(S=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{17.20}\)
\(3S=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+....+\frac{3}{17.20}\)
\(3S=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-....-\frac{1}{20}\)
\(3S=\frac{1}{2}-\frac{1}{20}=\frac{9}{20}\)
S = 9/20 : 3 = 3/20
\(S=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+...+\frac{1}{97.100}\)
\(S=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{97}-\frac{1}{100}\right)\)
\(S=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{100}\right)\)
\(S=\frac{1}{3}.\frac{49}{100}\)
\(S=\frac{49}{300}\)
\(s=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+...+\frac{1}{97.100}\)
\(s=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{97}-\frac{1}{100}\right)\)
\(s=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{100}\right)\)
\(s=\frac{1}{3}\left(\frac{50}{100}-\frac{1}{100}\right)\)
\(s=\frac{1}{3}.\frac{49}{100}\)
\(s=\frac{49}{300}\)
Vậy \(s=\frac{49}{100}\)
Chúc bạn học tốt !!!
S1 = 5 - 8 + 11 - 14 + 17 - ... - 902 + 905 có : ( 905 - 5 ) : 3 +1 = 301 ( số hạng )
Ta chia S1 thành 150 nhóm, mỗi nhóm 2 số thừa 1 số 905
S1 = ( 5 - 8 ) + ( 11 - 14 ) + ( 17 - 20 ) + ... + ( 899 - 902 ) + 905
S1 = ( -3 ) + ( -3 ) + ( -3 ) + ... + ( -3 ) + 905
S1 = ( -3 ) . 150 + 905
S1 = ( - 450 ) + 905
S1 = 455
Vậy S1 = 455
a: =-5/7(2/11+9/11)+12/7
=12/7-5/7
=7/7=1
b: \(=\dfrac{-12}{56}+\dfrac{35}{56}-\dfrac{28}{56}=\dfrac{-5}{56}\)
c: \(=\dfrac{1}{4}-\dfrac{5}{13}+\dfrac{2}{11}-\dfrac{8}{13}+\dfrac{3}{4}\)
=1-1+2/11
=2/11
d: \(=\dfrac{21}{31}+\dfrac{-16}{7}+\dfrac{44}{53}+\dfrac{10}{31}+\dfrac{9}{53}\)
=1+1-16/7
=-2/7
e: \(=\dfrac{\dfrac{4}{36}-\dfrac{30}{36}-\dfrac{144}{36}}{\dfrac{21}{36}-\dfrac{1}{36}-\dfrac{360}{36}}=\dfrac{-160}{-340}=\dfrac{8}{17}\)
Tính các tổng sau:
1, S=1-2+3_4+..+25-26
S =-1+3-5+7-...-53+55 ( có 28 số hạng )
= (-1+3)+(-5+7)+...+(-53+55) ( có 28:2=14 nhóm )
= 2+2+...+2
= 2 . 14
= 28
a, Số số hạng: (100 - 1) : 1 + 1 = 100
S = (100 + 1)100 : 2 = 5050
b, Số số hạng: (200 -2) : 2 + 1 = 100
S = (200 + 2).100 : 2 = 10100
C = 4 + 7 + 10 + 13 + .... + 301
số các số hạng của dãy số :
(301 + 4) : 3 + 1 =100 ( số hạng )
tổng là :
( 301 + 4 ) : 2 .100 =15250
=>C=15250
D = 5 + 9 + 13 + 17 + .. .+201
= (9+201)+(13+197)+....+(5+105)
= 210+210+...+110
= 210.48 +110
= 10190
bài 2
a)Gọi số đó là a. Ta có:
(a-5):3+1=100
=> a=302
b)Tổng 100 số hạng đầu tiên là:
(302+5)x100:2=15350
Đ/s: a) 302;
b) 15350
a) \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+........+\frac{1}{99.100}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+.........+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{2}-\frac{1}{100}=\frac{49}{100}\)
b) \(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+..........+\frac{2}{73.75}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+.......+\frac{1}{73}-\frac{1}{75}\)
\(=\frac{1}{3}-\frac{1}{75}=\frac{8}{25}\)
c) \(\frac{4}{4.6}+\frac{4}{6.8}+\frac{4}{8.10}+..........+\frac{4}{64.66}\)
\(=2.\left(\frac{2}{4.6}+\frac{2}{6.8}+\frac{2}{8.10}+..........+\frac{2}{64.66}\right)\)
\(=2.\left(\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+\frac{1}{8}-\frac{1}{10}+.....+\frac{1}{64}-\frac{1}{66}\right)\)
\(=2.\left(\frac{1}{4}-\frac{1}{66}\right)=2.\frac{31}{132}=\frac{31}{66}\)
d) \(\frac{9}{5.8}+\frac{9}{8.11}+\frac{9}{11.14}+........+\frac{9}{497.500}\)
\(=3.\left(\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+..........+\frac{3}{497.500}\right)\)
\(=3.\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+......+\frac{1}{497}-\frac{1}{500}\right)\)
\(=3.\left(\frac{1}{5}-\frac{1}{500}\right)=3.\frac{99}{500}=\frac{297}{500}\)
e) \(\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+......+\frac{1}{93.95}\)
\(=\frac{1}{2}.\left(\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+........+\frac{2}{93.95}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+........+\frac{1}{93}-\frac{1}{95}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{5}-\frac{1}{95}\right)=\frac{1}{2}.\frac{18}{95}=\frac{9}{95}\)
g) \(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+..........+\frac{1}{200.203}\)
\(=\frac{1}{3}.\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+........+\frac{3}{200.203}\right)\)
\(=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+......+\frac{1}{200}-\frac{1}{203}\right)\)
\(=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{203}\right)=\frac{1}{3}.\frac{201}{406}=\frac{67}{406}\)
49/300