Phân tích đa thức thành nhân tử:
a) m x 2 + my - n x 2 - ny; b) mz - 2z - m 2 + 2m;
c) x 2 y 2 + y 3 + z x 2 + yz; d) 2x2 + 4mx + x + 2m.
e) x 4 - 9 x 3 + x 2 - 9x; g) 3 x 2 -2 ( x - y ) 2 - 3 y 2 .
h*) xy(x + y) + yz (y + z) + xz(x + z) + 2xyz.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1A:
a: \(x^3+2x=x\left(x^2+2\right)\)
b: \(3x-6y=3\left(x-2y\right)\)
c: \(5\left(x+3y\right)-15x\left(x+3y\right)\)
\(=5\left(x+3y\right)\left(1-3x\right)\)
d: \(3\left(x-y\right)-5x\left(y-x\right)\)
\(=3\left(x-y\right)+5x\left(x-y\right)\)
\(=\left(x-y\right)\left(5x+3\right)\)
1A. a. x(x2+2)
b. 3(x-2y)
c. 5(x+3y)(1-3x)
d. (x-y) (3-5x)
1B. a. 2x(2x-3)
b.xy(x2-2xy+5)
c. 2x(x+1)(x+2)
d. 2x(y-1)+2y(y-1)=2(y-1)(x-y)
`a)(x+2)^2+2(x^2-4)+(x-2)^2`
`=(x+2)^2+2(x-2)(x+2)+(x-2)^2`
`=(x+2+x-2)^2=(2x)^2=4x^2`
`b)x^2-x+1/4`
`=x^2-2.x .1/2+1/4=(x-1/2)^2`
`c)(x+y)^3-(x-y)^3`
`=(x+y-x+y)[(x+y)^2+(x+y)(x-y)+(x-y)^2]`
`=2y(x^2+2xy+y^2+x^2-y^2+x^2-2xy+y^2)`
`=2y(3x^2+y^2)`
a) \(\left(x+2\right)^2+2\left(x^2-4\right)+\left(x-2\right)^2\)
\(=\left(x+2\right)^2+2\left(x+2\right)\left(x-2\right)+\left(x-2\right)^2\)
\(=\left(x+2+x-2\right)^2=\left(2x\right)^2=4x^2\)
b) \(x^2-x+\dfrac{1}{4}=\left(x-\dfrac{1}{2}\right)^2\)
c) \(\left(x+y\right)^3-\left(x-y\right)^3=\left(x^3+3x^2y+3xy^2+y^3\right)-\left(x^3-3x^2y+3xy^2-y^3\right)=6x^2y+2y^3=2y\left(3x^2+y^2\right)\)
a) \(x^2 (x+1)-2x(x+1)+x+1 \\ =(x+1)(x^2-2x+1)\\=(x+1)(x-1)^2\)
b) \(4x^2 -8x+3 \\= (2x^2)-2.2x .2 + 2^2 -1 \\=(2x-2)^2-1^2\\=(2x-2+1)(2x-2-1)\\= (2x-1)(2x-3)\)
Bn ấn vào câu hỏi của bn sẽ rs những câu tương tự có đáp án nhé!!Chúc bn lm đc bài này nha!!
Trả lời:
A=(x-1)(x+2)(x-3)(x+4)-144
A= (x2-5x-14)(x2-5x-24)-144 (1)
đặt m=x2-5x-14
=> A= m.(m-10)-144
A=m2-10m-144
A= (m-18)(m+8)
thay m vào, ta có:
A= (x2-5x-32)(x2-5x-6)
A=(x2-5x-32)(x+1)(x-6)
a) \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-15\left(1\right)=\left[\left(x+1\right)\left(x+4\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]-15=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-15\)
Đặt \(t=x^2+5x+4\)
(1) trở thành: \(t\left(t+2\right)-15=t^2+2t+1-16=\left(t+1\right)^2-4^2=\left(t-3\right)\left(t+5\right)\)
Thay t: \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-15=\left(x^2+5x+4-3\right)\left(x^2+5x+4+5\right)=\left(x^2+5x+1\right)\left(x^2+5x+9\right)\)
b) \(\left(2x+5\right)^2-\left(x-9\right)^2=\left(2x+5-x+9\right)\left(2x+5+x-9\right)=\left(x+14\right)\left(3x-4\right)\)
a: Ta có: \(\left(x+1\right)\cdot\left(x+2\right)\left(x+3\right)\left(x+4\right)-15\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-15\)
\(=\left(x^2+5x\right)^2+10\left(x^2+5x\right)+24-15\)
\(=\left(x^2+5x\right)^2+10\left(x^2+5x\right)+9\)
\(=\left(x^2+5x+1\right)\left(x^2+5x+9\right)\)
b: \(\left(2x+5\right)^2-\left(x-9\right)^2\)
\(=\left(2x+5-x+9\right)\left(2x+5+x-9\right)\)
\(=\left(x+15\right)\left(3x-4\right)\)
a: \(=5a\left(x-2y\right)\)
b: \(=x\left(x-y\right)+\left(x-y\right)=\left(x-y\right)\left(x+1\right)\)
c: =(x-1)(x-7)
a)\(5ax-10ay=5a\left(x-2y\right)\)
b) \(x^2-xy+x-y=x\left(x-y\right)+\left(x-y\right)=\left(x+1\right)\left(x-y\right)\)
c) \(x^2-8x+7=\left(x-7\right)\left(x-1\right)\)
\(a,2x\left(x-3\right)\\ b,x^2-\left(y+1\right)^2\\ =\left(x-y-1\right)\left(x+y+1\right)\)
a) \(x^8+x^4-2\)
\(=x^8+x^7+x^6+x^5+2x^4+2x^3+2x^2+2x-x^7-x^6-x^5-x^4-2x^3-2x^2-2x-2\)
\(=x\left(x^7+x^6+x^5+x^4+2x^3+2x^2+2x+2\right)-\left(x^7+x^6+x^5+x^4+2x^3+2x^2+2x+2\right)\)
\(=\left(x-1\right)\left(x^7+x^6+x^5+x^4+2x^3+2x^2+2x+2\right)\)
\(=\left(x-1\right)\left[x^4\left(x^3+x^2+x+1\right)+2\left(x^3+x^2+x+1\right)\right]\)
\(=\left(x-1\right)\left(x^4+2\right)\left(x^3+x^2+x+1\right)\)
\(=\left(x-1\right)\left(x^2+2\right)\left[x^2\left(x+1\right)+\left(x+1\right)\right]\)
\(=\left(x-1\right)\left(x^2+1\right)\left(x^2+1\right)\left(x+1\right)\)
c) \(\left(x^2+x\right)^2-2\left(x^2+x\right)-15\)
\(=x^4+2x^3+x^2-2x^2-2x-15\)
\(=x^4+2x^3-x^2-2x-15\)
\(=x^4+x^3+3x^2+x^3+x^2+3x-5x^2-5x-15\)
\(=x^2\left(x^2+x+3\right)+x\left(x^2+x+3\right)-5\left(x^2+x+3\right)\)
\(=\left(x^2+x+3\right)\left(x^2+x-5\right)\)
\(a,=5x\left(4x-1\right)\\ b,=y^2-\left(x-1\right)^2=\left(y-x+1\right)\left(y+x-1\right)\\ c,=6x^2+3x-4x-2=3x\left(x+2\right)-2\left(x+2\right)=\left(3x-2\right)\left(x+2\right)\)