K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2018

a) Hình thoi có tất cả các cạnh bằng nhau nhưng các góc có thể không bằng nhau nên hình thoi không buộc phải là đa giác đều.

b) Hình chữ nhật có tất cả các góc bằng nhau nhưng các cạnh có thể không bằng nhau nên hình chữ nhật không buộc phải là đa giác đều.

21 tháng 4 2017

a) Hình thoi có tất cả các cạnh bằng nhau nhưng các góc có thể không bằng nhau nên hình thoi không buộc phải là đa giác đều.

b) Hình chữ nhật có tất cả các góc bằng nhau nhưng các cạnh có thể không bằng nhau nên hình chữ nhật không buộc phải là đa giác đều.

21 tháng 4 2017

a) Hình thoi không có góc vuông, có tất cả các cạnh bằng nhau nhưng các góc không bằng nhau nên hình thoi không phải là đa giác đều.

b) Hình chữ nhật có tất cả các góc bằng nhau nhưng các cạnh không bằng nhau nên hình chữ nhật không phải là đa giác đều.

28 tháng 8 2016

ét hai n-giác đều: A1A2..An và A'1A'2..A'n 
=> số đo các góc đều bằng nhau = 180(n-2)/n 

hai tgiác A1A2A3 và A'1A'2A'3 bằng nhau 
=> tồn tại duy nhất phép dời D: (A1A2A3) --> (A'1A'2A'3) 
do phép dời bảo toàn độ lớn của góc (kể cả hướng góc) và khoảng cách 2 điểm 
=> qua D: A4 --> A'4 
Có thể làm rõ hơn là gọi D: A4 --> A''4 
có A3A4 = A'3A''4 và góc định hướng A2Â3A4 = A'2Â'3A''4 
=> A''4 ≡ A'4 
tương tự qua D: An --> A'n 
=> D: (A1A2..An) --> (A'1A'2..A'n) 
=> A1A2..An = A'1A'2..A'n

Chọn D

24 tháng 12 2021

Câu 39: C

Câu 40: B

 

24 tháng 12 2021

Câu 38 C

Câu 39: C

Câu 40: B

12 tháng 10 2017

Phương án A, B và D đều sai

Phương án C đúng vì tam giác CB’D’ có ba cạnh bằng a, a√3,a√3 nên không thể vuông tại B’

Đáp án C

30 tháng 6 2019

Phương pháp:

+ Sử dụng định nghĩa để tìm góc giữa hai mặt phẳng (P) và (Q):

khi đó góc giữa (P) và (Q) chính là góc giữa hai đường thẳng a và b.

+ Sử dụng định lý hàm số cos trong tam giác để tính toán:

Cho tam giác ABC khi đó 

 

Cách giải:

Hình chóp tứ giác đều S.ABCD có tất cả các cạnh đều bằng a, ta tìm góc giữa hai mặt phẳng (SAD) và (SBC).

Gọi M, N là trung điểm các cạnh AD và BC, khi đó SM ⊥ AD và SN ⊥ BC (do các tam giác SBC;SAD là các tam giác đều).

Vì BC//AD nên giao tuyến của hai mặt phẳng (SAD) và (SBC) là đường thẳng d qua S và song song AD, BC.

Vì SM ⊥ AD và SNBC nên SM ⊥ d và SN ⊥ d   góc giữa hai mặt phẳng (SAD) và (SBC) là góc MSN.

Mặt bên là các tam giác đều cạnh a nên 

Khi đó: 

Chọn A

Chú ý khi giải:

Các em có thể tính SO theo tỉ số lượng giác và suy ra MSN = 2MSO

29 tháng 4 2017