Xác định giá trị a, b, c để 9 x 2 - 16 x + 4 x 3 - 3 x 2 + 2 x = a x + b x - 1 + c x - 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.a)\(\frac{x^3}{x^2-4}-\frac{x}{x-2}-\frac{2}{x+2}\)
\(=\frac{x^3}{\left(x+2\right)\left(x-2\right)}-\frac{x}{x-2}-\frac{2}{x+2}\)
Để biểu thức được xác định thì:\(\left(x+2\right)\left(x-2\right)\ne0\)\(\Rightarrow x\ne\pm2\)
\(\left(x+2\right)\ne0\Rightarrow x\ne-2\)
\(\left(x-2\right)\ne0\Rightarrow x\ne2\)
Vậy để biểu thức xác định thì : \(x\ne\pm2\)
b) để C=0 thì ....
1, c , bn Nguyễn Hữu Triết chưa lm xong
ta có : \(/x-5/=2\)
\(\Rightarrow\orbr{\begin{cases}x-5=2\\x-5=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x=7\\x=3\end{cases}}\)
thay x = 7 vào biểu thứcC
\(\Rightarrow C=\frac{4.7^2\left(2-7\right)}{\left(7-3\right)\left(2+7\right)}=\frac{-988}{36}=\frac{-247}{9}\)KL :>...
thay x = 3 vào C
\(\Rightarrow C=\frac{4.3^2\left(2-3\right)}{\left(3-3\right)\left(3+7\right)}\)
=> ko tìm đc giá trị C tại x = 3
a,ĐKXĐ:\(\left\{{}\begin{matrix}x-4\ne0\\x+4\ne0\\x^2-16\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne4\\x\ne-4\\x\ne\pm4\end{matrix}\right.\Leftrightarrow x\ne\pm4\)
b,\(\dfrac{4}{x-4}+\dfrac{3}{x+4}.\dfrac{6x}{x^2-16}=\dfrac{4}{x-4}+\dfrac{18x}{\left(x-4\right)\left(x+4\right)^2}=\dfrac{4\left(x+4\right)^2+18x}{\left(x-4\right)\left(x+4\right)^2}=\dfrac{4\left(x^2+8x+16\right)+18x}{\left(x-4\right)\left(x+4\right)^2}=\dfrac{4x^2+32x+64+18x}{\left(x-4\right)\left(x+4\right)^2}=\dfrac{4x^2+50x+64}{\left(x-4\right)\left(x+4\right)^2}\)
a: |x-1|=3
=>x-1=3 hoặc x-1=-3
=>x=-2(nhận) hoặc x=4(loại)
Khi x=-2 thì \(A=\dfrac{4+4}{-2-4}=\dfrac{8}{-6}=\dfrac{-4}{3}\)
b: ĐKXĐ: x<>4; x<>-4
\(B=\dfrac{-\left(x+4\right)}{x-4}+\dfrac{x-4}{x+4}-\dfrac{4x^2}{\left(x-4\right)\left(x+4\right)}\)
\(=\dfrac{-x^2-8x-16+x^2-8x+16-4x^2}{\left(x-4\right)\left(x+4\right)}=\dfrac{-4x^2-16x}{\left(x-4\right)\left(x+4\right)}\)
=-4x/x-4
c: A+B
=-4x/x-4+x^2+4/x-4
=(x-2)^2/(x-4)
A+B>0
=>x-4>0
=>x>4
1) a) Căn thức có nghĩa \(\Leftrightarrow4-2x\ge0\Leftrightarrow2x\le4\Leftrightarrow x\le2\)
b) Thay x = 2 vào biểu thức A, ta được: \(A=\sqrt{4-2.2}=\sqrt{0}=0\)
Thay x = 0 vào biểu thức A, ta được: \(A=\sqrt{4-2.0}=\sqrt{4}=2\)
Thay x = 1 vào biểu thức A, ta được: \(A=\sqrt{4-2.1}=\sqrt{2}\)
Thay x = -6 vào biểu thức A, ta được: \(A=\sqrt{4-2.\left(-6\right)}=\sqrt{16}=4\)
Thay x = -10 vào biểu thức A, ta được: \(A=\sqrt{4-2.\left(-10\right)}=\sqrt{24}=2\sqrt{6}\)
c) \(A=0\Leftrightarrow\sqrt{4-2x}=0\Leftrightarrow4-2x=0\Leftrightarrow x=2\)
\(A=5\Leftrightarrow\sqrt{4-2x}=5\Leftrightarrow4-2x=25\Leftrightarrow x=\frac{-21}{2}\)
\(A=10\Leftrightarrow\sqrt{4-2x}=10\Leftrightarrow4-2x=100\Leftrightarrow x=-48\)
a) ĐKXĐ: \(x\notin\left\{3;-3;-2\right\}\)
Ta có: \(P=\left(\dfrac{2x-1}{x+3}-\dfrac{x}{3-x}-\dfrac{3-10x}{x^2-9}\right):\dfrac{x+2}{x-3}\)
\(=\left(\dfrac{\left(2x-1\right)\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}+\dfrac{x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\dfrac{3-10x}{\left(x-3\right)\left(x+3\right)}\right):\dfrac{x+2}{x-3}\)
\(=\dfrac{2x^2-6x-x+3+x^2+3x-3+10x}{\left(x-3\right)\left(x+3\right)}:\dfrac{x+2}{x-3}\)
\(=\dfrac{3x^2+6x}{\left(x-3\right)\left(x+3\right)}:\dfrac{x+2}{x-3}\)
\(=\dfrac{3x\left(x+2\right)}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x-3}{x+2}\)
\(=\dfrac{3x}{x+3}\)
b) Ta có: \(x^2-7x+12=0\)
\(\Leftrightarrow x^2-3x-4x+12=0\)
\(\Leftrightarrow x\left(x-3\right)-4\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\left(loại\right)\\x=4\left(nhận\right)\end{matrix}\right.\)
Thay x=4 vào biểu thức \(P=\dfrac{3x}{x+3}\), ta được:
\(P=\dfrac{3\cdot4}{4+3}=\dfrac{12}{7}\)
Vậy: Khi \(x^2-7x+12=0\) thì \(P=\dfrac{12}{7}\)
a) \(P=\dfrac{3}{x+3}+\dfrac{1}{x-3}-\dfrac{18}{9-x^2}\)
a) \(ĐKXĐ:\) x khác + 3
\(b,P=\dfrac{3\left(x-3\right)+x+3+18}{\left(x+3\right)\left(x-3\right)}\)
\(P=\dfrac{3x-9+x+3+18}{\left(x+3\right)\left(x-3\right)}\)
\(P=\dfrac{4x+12}{\left(x+3\right)\left(x-3\right)}\)
\(P=\dfrac{4\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}\)
\(P=\dfrac{4}{x-3}\)
c) \(P=4=\dfrac{4}{x-3}=4=x-3=1=x=4\)
a: ĐKXĐ: \(x\notin\left\{3;-3\right\}\)
b: \(P=\dfrac{3x-9+x+3+18}{\left(x-3\right)\left(x+3\right)}=\dfrac{4x+12}{\left(x-3\right)\left(x+3\right)}=\dfrac{4}{x-3}\)
c: Để P=4 thì x-3=1
hay x=4
Ta có:
Dùng phương pháp hệ số bất định, khi đó ta có hệ:
Vậy giá trị của a, b, c cần tìm là a = 2; b = 3; c = 4.