K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2018

Tam thức f(x) = 5x2 – 3x + 1 có Δ = 9 – 20 = –11 < 0 nên f(x) cùng dấu với hệ số a.

Mà a = 5 > 0

Do đó f(x) > 0 với ∀ x ∈ R.

b: \(\Delta=2^2-4\cdot1\cdot1=0\)

Do đó: Tam thức này dương khi x khác -1; bằng 0 khi x=-1

a: \(\Delta=3^2-4\cdot\left(-5\right)\cdot\left(-1\right)=9-20=-11< 0\)

Do đó: Tam thức này luôn âm với mọi x

c: \(\Delta=1^2-4\cdot1\cdot\left(-2\right)=9\)

Do đó: Tam thức này âm khi -2<x<1

Bằng 0 khi x=-2 hoặc x=1

Dương khi x<-2 hoặc x>1

20 tháng 6 2018

a) \(f\left(x\right)=5x^2-3x+1\text{ có }\Delta=9-20=-11< 0\text{ và có Hsố là: }a=5>0\text{ nên }f\left(x\right)>0;\forall x\inℝ\)

b) \(f\left(x\right)=-2x^2+3x+5\text{ có }\Delta=9+40=49\)

Tam thức có hai nghiệm phân biệt: \(\orbr{\begin{cases}x_1=-1\\x_2=\frac{5}{2}\end{cases}}\)

Ta có bảng xét dấu:

x f(x) -∞ -1 5/2 +∞ - 0 + 0 -

\(\Rightarrow f\left(x\right)>0\Leftrightarrow x\in\left\{-1;\frac{5}{2}\right\}\)

    \(f\left(x\right)=0\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\frac{5}{2}\end{cases}}\)

  \(f\left(x\right)< 0\Leftrightarrow x\in\left\{-\infty;-1\right\}\text{∪}\left\{\frac{5}{2};+\infty\right\}\)

c) \(f\left(x\right)=x^2+12x+36\text{ có }\Delta=0\Rightarrow\text{Nghiệm là: }-6\)

Ta có bảng xét dấu:

x f(x) -∞ -6 +∞ + 0 +

\(\Rightarrow f\left(x\right)>0\Leftrightarrow x\ne-6\)

    \(f\left(x\right)=0\Leftrightarrow x=-6\)

Ta có thể phân tích như sau: \(f\left(x\right)=\left(x+6\right)^2\ge0;\forall x\inℝ\)

d) \(f\left(x\right)=\left(2x-3\right)\left(x+5\right)\text{ có hai nghiệm phân biệt: }\orbr{\begin{cases}x_1=\frac{3}{2}\\x_2=-5\end{cases}}\)

Ta có bảng xét dấu: 

x -∞ -5 3/2 +∞ f(x) + 0 - 0 +

\(\Rightarrow f\left(x\right)>0\Leftrightarrow x\in\left\{-\infty;-5\right\}\text{∪}\left\{\frac{3}{2};+\infty\right\}\)

    \(f\left(x\right)=0\Leftrightarrow\orbr{\begin{cases}x=-5\\x=\frac{3}{2}\end{cases}}\)

  \(f\left(x\right)< 0\Leftrightarrow x\in\left\{-5;\frac{3}{2}\right\}\)

4 tháng 7 2019

Giải sách bài tập Toán 10 | Giải sbt Toán 10

26 tháng 10 2018

am thức f(x) = –2x2 + 3x + 5 có Δ = 9 + 40 = 49 > 0.

Tam thức có hai nghiệm phân biệt x1 = –1; x2 = 5/2, hệ số a = –2 < 0

Ta có bảng xét dấu:

Giải bài 1 trang 105 SGK Đại Số 10 | Giải toán lớp 10

Vậy f(x) > 0 khi x ∈ (–1; 5/2)

f(x) = 0 khi x = –1 ; x = 5/2

f(x) < 0 khi x ∈ (–∞; –1) ∪ (5/2; +∞)

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

a) \(f(x) = 3{x^2} - 4x + 1\)có \(\Delta  = 4\)>0, \(a = 3 > 0\)và có hai nghiệm phân biệt \({x_1} = 1;{x_2} = \frac{1}{3}\). Do đó ta có bảng xét dấu \(f(x)\):

Suy ra \(f(x) > 0\)với mọi \(x \in \left( { - \infty ;\frac{1}{3}} \right) \cup \left( {1; + \infty } \right)\) và \(f(x) < 0\)với mọi \(x \in \left( {\frac{1}{3};1} \right)\)

 

b) \(g(x) = {x^2} + 2x + 1\) có \(\Delta  = 0\) và a=1>0 nên \(g(x)\)có nghiệm kép \(x =  - 1\) và \(g(x) > 0\)với \(x \ne  - 1\)

c) \(h(x) =  - {x^2} + 3x - 2\) có \(\Delta  = 1 > 0\), \(a =  - 1\)

Suy ra \(h(x) > 0\) với mọi \(x \in (1;2)\)và \(h(x) < 0\)với mọi \(x \in ( - \infty ;1) \cup (2; + \infty )\)

d) \(k(x) =  - {x^2} + x - 1\) có \(\Delta  =  - 3\), a=-1

Suy ra \( k(x) >0 \)với mọi \(x \in \mathbb{R}\)

13 tháng 2 2019

Giải sách bài tập Toán 10 | Giải sbt Toán 10

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

a) \(f\left( x \right) = 2{x^2} - 3x - 2\) có \(\Delta  = 25 > 0\), hai nghiệm phân biệt là \({x_1} =  - \frac{1}{2};{x_2} = 2\)

và \(a = 2 > 0\)

Ta có bảng xét dấu như sau:

 

Vậy \(f\left( x \right)\) âm trong khoảng \(\left( { - \frac{1}{2},2} \right)\) và dương trong hai khoảng

 \(\left( { - \infty , - \frac{1}{2}} \right)\) và \(\left( {2, + \infty } \right)\)

b) \(g\left( x \right) =  - {x^2} + 2x - 3\) có \(\Delta  = {2^2} - 4.\left( { - 1} \right).\left( { - 3} \right) =  - 8 < 0\) và \(a =  - 1 < 0\)

Vậy \(g\left( x \right)\)âm với mọi \(x \in \mathbb{R}\)

10 tháng 3 2018

Đáp án: A

Từ bảng xét dấu ta thấy phương trình f(x) = 0 có 2 nghiệm là -3 và 2. Do đó, ta loại được đáp án C và D

Dựa vào bảng xét dấu, f(x) > 0 trong khoảng (-3;2) do đó hệ số a < 0

16 tháng 2 2018

Tam thức f(x) = x2 + 12x + 36 có một nghiệm là x = –6, hệ số a = 1 > 0.

Ta có bảng xét dấu:

Giải bài 1 trang 105 SGK Đại Số 10 | Giải toán lớp 10

Vậy f(x) > 0 với ∀ x ≠ –6

f(x) = 0 khi x = –6