K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 2 2019

Ta có MD // AN suy ra A 1 ^ = M 1 ^  (cặp góc so le trong); ME // AC suy ra A 2 ^ = M 2 ^  (cặp góc so le trong).

Tia MA nằm giữa hai tia MD và ME. Do đó tia MA là tia phân giác của góc DME.

  ⇔ M 1 ^ = M 2 ^ ⇔ A 1 ^ = A 2 ^ ⇔ M là giao điểm của BC với tia phân giác của góc A

12 tháng 7 2021

Ta có MD // AN suy ra A 1 ^ = M 1 ^  (cặp góc so le trong); ME // AC suy ra A 2 ^ = M 2 ^  (cặp góc so le trong).

Tia MA nằm giữa hai tia MD và ME. Do đó tia MA là tia phân giác của góc DME.

  ⇔ M 1 ^ = M 2 ^ ⇔ A 1 ^ = A 2 ^ ⇔ M là giao điểm của BC với tia phân giác của góc A

 

a) Xét tứ giác ADME có 

AD//ME

DM//AE

Do đó: ADME là hình bình hành

b) Xét ΔEMC có \(\widehat{EMC}=\widehat{C}\left(=\widehat{B}\right)\)

nên ΔEMC cân tại E

Suy ra: EM=EC

Ta có: AE+EC=AC(E nằm giữa A và C)

mà AE=DM(AEMD là hình bình hành

mà EM=EC(cmt)

nên AC=MD+ME

2 tháng 10 2021

cho mình hỏi ngu tí là ở câu b đó ạ,từ đâu mà suy ra được góc EMC = C(=B) ạ :((

27 tháng 6 2021

A B C M D E 1 1 1 1 2

a) Do ΔABC đều => AB = BC = AC = a; \(\widehat{A}=\widehat{B}=\widehat{C}=60^o\)

Xét ΔBDM vuông tại D có: MD = MB.sin\(\widehat{B}\) = MB.sin60o = MB.\(\dfrac{\sqrt{3}}{2}\)

                                           BD = MB.cos\(\widehat{B}\) = MB.cos60o = \(\dfrac{1}{2}\).MB

ΔCEM vuông tại E có: ME = MC.sin\(\widehat{C}\) = MC.sin60o = MC.\(\dfrac{\sqrt{3}}{2}\)

                                     EC = MC.cos\(\widehat{C}\) = MC.cos60o = \(\dfrac{1}{2}\).MC

=> Chu vi tứ giác ADME là:

AD + AE + MD + ME = (AB - BD) + (AC - CE) + MB.\(\dfrac{\sqrt{3}}{2}\) + MC.\(\dfrac{\sqrt{3}}{2}\)

                                  = AB + AC - (BD + CE) + \(\dfrac{\sqrt{3}}{2}\)(MB + MC)

                                  = AB + AC - \(\dfrac{1}{2}\).(MB + MC) +   \(\dfrac{\sqrt{3}}{2}\)(MB + MC)

                                   = AB + AC + \(\dfrac{\left(\sqrt{3}-1\right)}{2}\).BC

                                   = a + a + \(\dfrac{\left(\sqrt{3}-1\right)}{2}\).a = \(\dfrac{3+\sqrt{3}}{2}\).a

Do a không đổi => chu vi tứ giác ADME không đổi 

b) Xét ΔBMD vuông tại D => \(\widehat{M_1}=90^o-\widehat{B}=90^o-60^o=30^o\)

ΔCME vuông tại E => \(\widehat{M_2}=90^o-\widehat{C}=90^o-60^o=30^o\) => 

Tứ giác BDEC nội tiếp đường tròn ⇔ \(\widehat{E_2}=\widehat{B}=60^o\)

Mà \(\widehat{B}=\widehat{C}=60^o\) (cmt) => \(\widehat{E_2}=\widehat{C}\). Mà 2 góc ở vị trí đồng vị => DE // BC

=> \(\left\{{}\begin{matrix}\widehat{D_1}=\widehat{M_1}=30^o\\\widehat{E_1}=\widehat{M_2}=30^o\end{matrix}\right.\)(hai góc so le trong)

=> \(\widehat{D_1}=\widehat{E_1}\left(=30^o\right)\)

=> ΔMDE cân tại M => MD = ME

=> \(\dfrac{\sqrt{3}}{2}\).MB = \(\dfrac{\sqrt{3}}{2}\).MC => MB = MC => M là trung điểm của BC

Vậy để tứ giác BDEC nội tiếp thì M là trung điểm của BC

 

28 tháng 7 2019

Tham khảo câu a tại đây nha!

Giải toán trên mạng - Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath