K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 1 2016

A B C D E  

Vì \(\Delta\)ABC cân tại A

=>góc ABC= góc CAB(1)

Ta có: góc ABC+ góc ABD=180 độ(2 góc kề bù)

=>góc ABD=180 độ- góc ABC(2)

  góc ACB+ góc ACE= 180 độ(2 góc kề bù)

=>góc ACE= 180 đọ - góc ACB(3)

Từ (1), (2) và (3)=>góc ABD= góc ACE

Xét \(\Delta\)ABD & \(\Delta\)ACE có:

AB=AC( \(\Delta\)ABC cân tại A)

góc ABD= góc ACE( theo c/m trên)

BD=CE( giả thiết)

=>\(\Delta\)ABD=\(\Delta\)ACE(c.g.c)

=>góc ADB= góc AEC( 2 góc tương ứng)

=>\(\Delta\)ADE cân tại A

a: Xét ΔABD và ΔACE có

AB=AC
góc ABD=góc ACE

BD=CE

=>ΔABD=ΔACE

=>AD=AE

=>ΔADE cân tại A

b: ΔABC cân tại A có AM là trung tuyến

nên AM vuông góc BC

=>AM vuông góc DE

ΔADE cân tại A

có AM là đường cao

nên AM là phân giác của góc DAE

1 tháng 6 2018

Chứng minh được tam giác ABD =  tam giác ACE (c-g-c) => AD = AE

Từ đó tam giác ADE cân tại A.

Xét ΔABD và ΔACE có

AB=AC

góc ABD=góc ACE

BD=CE

Do đó: ΔABD=ΔACE

=>AD=AE

31 tháng 5 2017

Hình vẽ:

A B C D E

Giải:

Vì tam giác \(ABC\) cân tại \(A\):

\(\Rightarrow\widehat{ABC}=\widehat{ACB}\)

\(\Rightarrow\widehat{ABD}=\widehat{ACE}\) ( góc bù )

Xét \(\Delta ABD\)\(\Delta ACE\) có:

\(AB=AC \) \(\left(gt\right)\)

\(\widehat{ABD}=\widehat{ACE}\) \(\left(cmt\right)\)

\(BD=CE \) \(\left(gt\right)\)

Do đó: \(\Delta ABD=\Delta ACE\) \(\left(c.g.c\right)\)

\(\Rightarrow AD=AE\) ( cặp cạnh tương ứng )

\(\Rightarrow\Delta ADE\) cân tại \(A\).

20 tháng 1 2018

Bài làm

Bạn tự vẽ hình nhé

Vì tam giác ABCABC cân tại A:

⇒ˆABC=ˆACB⇒ABC^=ACB^

⇒ˆABD=ˆACE⇒ABD^=ACE^ ( góc bù )

Xét ΔABDΔABDΔACEΔACE có:

AB=ACAB=AC (gt)

ˆABD=ˆACEABD^=ACE^ (cmt)

BD=CEBD=CE (gt)(gt)

Do đó: ΔABD=ΔACEΔABD=ΔACE (c.g.c)(c.g.c)

⇒AD=AE⇒AD=AE ( cặp cạnh tương ứng )

⇒ΔADE⇒ΔADE cân tại A

Xét ΔABD và ΔACE có

AB=AC

góc ABD=góc ACE

BD=CE

Do đó: ΔABD=ΔACE

=>AD=AE

4 tháng 4 2018

theo đầu bài ta có góc abc=góc acb 

mà góc ABD+ABC =180(kề bù)

góc ACE+ACB =180 (kề bù)

suy ra góc ABD =ACE

xét tam giác ABD và tam giác ACE 

AB=AC(gt)

góc ABD=ACE

BD=CE(gt)

Do đó tam giác ABD=tam giác ACE (c.g.c)

nên AD=AE (2 cạnh tương ứng)

suy ra tam giác ADE cân

27 tháng 1 2016

tam giác ABC cân =>góc B=góc C 

=>góc ABD=góc ACE (dựa vào 2 góc kề bù)

Xét tam giác ABD và tam giác ACE có

AB=AC(tam giác ABC cân)

góc ABD= góc ACE(cmt)

BD=CE(GT)

=>tam giác ABD = tam giác ACE (c-g-c)

=>AD=AE(2 cạnh tương ứng)

=>tam giác ADE cân tại A

 

 

22 tháng 4 2022

A B C D E

GT KL tam giác ABC vuông tại A CA = CD CE = CB a, tam giác ABC = tam giác DEC b, tính góc CDE = 90 độ c. tính cạnh AB

a, Xét △ABC và △DCE có

AC = CD

C^ đối đỉnh

BC = CE

=> △ABC = △DCE

b, VÌ △ABC = △DCE nên góc BAC = góc CDE 

=> CDE = 90 độ

c, Vì BE = BC + CE = 20

Mà BC = CE = \(\dfrac{BC}{2}\) = \(\dfrac{20}{2}\) = 10

Vì AD = AC + CD = 16

Mà AC = CD = \(\dfrac{AD}{2}\) = \(\dfrac{16}{2}\) = 8

Áp dụng định lý Pytago 

ta có : \(BC^2=AB^2+AC^2\)

          \(10^2=AB^2+8^2\)

          \(100=AB^2+64\)

          \(AB^2=100-64=36\)

   Vậy \(AB=6^2\)

Mong bạn tick cho mik :))

Thanks bn nhiều nha :333