Cho tam giác ABC cân tại A. Trên tia đối của BC lấy D, trên tia đối của CB lấy E sao cho BD=CE. Chứng minh tam giác ADE cân
Vẽ hình rồi giải ra(Nếu có giả thiết kết luận càng tốt)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
=>ΔABD=ΔACE
=>AD=AE
=>ΔADE cân tại A
b: ΔABC cân tại A có AM là trung tuyến
nên AM vuông góc BC
=>AM vuông góc DE
ΔADE cân tại A
có AM là đường cao
nên AM là phân giác của góc DAE
Chứng minh được tam giác ABD = tam giác ACE (c-g-c) => AD = AE
Từ đó tam giác ADE cân tại A.
Xét ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
Do đó: ΔABD=ΔACE
=>AD=AE
Hình vẽ:
Giải:
Vì tam giác \(ABC\) cân tại \(A\):
\(\Rightarrow\widehat{ABC}=\widehat{ACB}\)
\(\Rightarrow\widehat{ABD}=\widehat{ACE}\) ( góc bù )
Xét \(\Delta ABD\) và \(\Delta ACE\) có:
\(AB=AC \) \(\left(gt\right)\)
\(\widehat{ABD}=\widehat{ACE}\) \(\left(cmt\right)\)
\(BD=CE \) \(\left(gt\right)\)
Do đó: \(\Delta ABD=\Delta ACE\) \(\left(c.g.c\right)\)
\(\Rightarrow AD=AE\) ( cặp cạnh tương ứng )
\(\Rightarrow\Delta ADE\) cân tại \(A\).
Bài làm
Bạn tự vẽ hình nhé
Vì tam giác ABCABC cân tại A:
⇒ˆABC=ˆACB⇒ABC^=ACB^
⇒ˆABD=ˆACE⇒ABD^=ACE^ ( góc bù )
Xét ΔABDΔABD và ΔACEΔACE có:
AB=ACAB=AC (gt)
ˆABD=ˆACEABD^=ACE^ (cmt)
BD=CEBD=CE (gt)(gt)
Do đó: ΔABD=ΔACEΔABD=ΔACE (c.g.c)(c.g.c)
⇒AD=AE⇒AD=AE ( cặp cạnh tương ứng )
⇒ΔADE⇒ΔADE cân tại A
Xét ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
Do đó: ΔABD=ΔACE
=>AD=AE
theo đầu bài ta có góc abc=góc acb
mà góc ABD+ABC =180(kề bù)
góc ACE+ACB =180 (kề bù)
suy ra góc ABD =ACE
xét tam giác ABD và tam giác ACE
AB=AC(gt)
góc ABD=ACE
BD=CE(gt)
Do đó tam giác ABD=tam giác ACE (c.g.c)
nên AD=AE (2 cạnh tương ứng)
suy ra tam giác ADE cân
tam giác ABC cân =>góc B=góc C
=>góc ABD=góc ACE (dựa vào 2 góc kề bù)
Xét tam giác ABD và tam giác ACE có
AB=AC(tam giác ABC cân)
góc ABD= góc ACE(cmt)
BD=CE(GT)
=>tam giác ABD = tam giác ACE (c-g-c)
=>AD=AE(2 cạnh tương ứng)
=>tam giác ADE cân tại A
a, Xét △ABC và △DCE có
AC = CD
C^ đối đỉnh
BC = CE
=> △ABC = △DCE
b, VÌ △ABC = △DCE nên góc BAC = góc CDE
=> CDE = 90 độ
c, Vì BE = BC + CE = 20
Mà BC = CE = \(\dfrac{BC}{2}\) = \(\dfrac{20}{2}\) = 10
Vì AD = AC + CD = 16
Mà AC = CD = \(\dfrac{AD}{2}\) = \(\dfrac{16}{2}\) = 8
Áp dụng định lý Pytago
ta có : \(BC^2=AB^2+AC^2\)
\(10^2=AB^2+8^2\)
\(100=AB^2+64\)
\(AB^2=100-64=36\)
Vậy \(AB=6^2\)
Mong bạn tick cho mik :))
Vì \(\Delta\)ABC cân tại A
=>góc ABC= góc CAB(1)
Ta có: góc ABC+ góc ABD=180 độ(2 góc kề bù)
=>góc ABD=180 độ- góc ABC(2)
góc ACB+ góc ACE= 180 độ(2 góc kề bù)
=>góc ACE= 180 đọ - góc ACB(3)
Từ (1), (2) và (3)=>góc ABD= góc ACE
Xét \(\Delta\)ABD & \(\Delta\)ACE có:
AB=AC( \(\Delta\)ABC cân tại A)
góc ABD= góc ACE( theo c/m trên)
BD=CE( giả thiết)
=>\(\Delta\)ABD=\(\Delta\)ACE(c.g.c)
=>góc ADB= góc AEC( 2 góc tương ứng)
=>\(\Delta\)ADE cân tại A