Cho dãy số ( u n ) thoả mãn điều kiện: Với mọi n ∈ N ∗ thì 0 < u n < 1 v à u n + 1 < 1 - 1 4 u n Chứng minh dãy số đã cho là dãy giảm.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để A>0 thì \(\frac{n-20}{30}>0\) mà 30>0 nên n-20>0 hay n>20
b) \(1< A< 2\Leftrightarrow\frac{30}{30}< \frac{n-20}{30}< \frac{60}{30}\)
\(\Rightarrow30< n-20< 60\)
\(\Rightarrow50< n< 80\)( Cộng 3 vế với 20 )
c) Tương tự câu b :
\(\frac{15}{30}< \frac{n-20}{30}< \frac{30}{30}\Leftrightarrow15< n-20< 30\)
\(\Rightarrow35< n< 50\)
\(n\in\left\{36;37;...;49\right\}\)
Nên n có \(49-36+1\)số hạng hay n có 14 số hạng
Không biết đề có vấn đề không nữa, tại vì không có cách nào để rút được c ra hết do f(n+1)-f(n) kiểu gì c cũng bị khử. Tuy nhiên nếu xét trường hợp với mọi c thì thay n=3 trở lên giải ngược lại không có nghiệm c nào thỏa mãn hết hehe nên là mình nghĩ đề sẽ kiểu "với n=1 hoặc n=2" . Theo mình nghĩ là vậy...
Giả sử n=1 ta có:
\(f\left(1+1\right)-f\left(1\right)=1\Leftrightarrow f\left(2\right)-f\left(1\right)=1\Leftrightarrow4a+2b+c-a-b-c=1\Leftrightarrow3a+b=1\) (1)
Giả sử n=2 ta có:
\(f\left(2+1\right)-f\left(2\right)=4\Leftrightarrow f\left(3\right)-f\left(2\right)=4\Leftrightarrow9a+3b+c-4a-2b-c=4\Leftrightarrow5a+b=4\) (2)
Từ (1) và (2) ta có: \(\left\{{}\begin{matrix}3a+b=1\\5a+b=4\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=\dfrac{3}{2}\\b=-\dfrac{7}{2}\end{matrix}\right.\)
\(\Rightarrow f\left(x\right)=\dfrac{3}{2}x^2-\dfrac{7}{2}x+c\) (với c là hằng số bất kì)
Câu 1:
2x2 + 2y2 = 5xy
<=> 2(x2 + y2) = 5xy
<=> x2 + y2 = \(\dfrac{5xy}{2}\)
P = \(\dfrac{x-y}{x+y}\)
=> P2 = \(\dfrac{\left(x-y\right)^2}{\left(x+y\right)^2}=\dfrac{x^2+y^2-2xy}{x^2+y^2+2xy}\left(1\right)\)
Thay x2 + y2 = \(\dfrac{5xy}{2}\) vào (1), ta có:
P2 = \(\dfrac{\dfrac{5xy}{2}-2xy}{\dfrac{5xy}{2}+2xy}=\dfrac{0,5xy}{4,5xy}=\dfrac{1}{9}\)
=> P = \(\sqrt{\dfrac{1}{9}}=\dfrac{1}{3}\left(0< x< y\right)\)
Câu 3: Câu hỏi của Hoàng Mai Anh - Toán lớp 8 | Học trực tuyến