Baif 1:
Cho x1+x2+x3+...+x2005+x2006+x2007=0
Và x1+x2=x3+x4=...=x2005+x2006=x2007+x1.Vậy tính x1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: ( x 1 + x 2 ) + ( x 3 + x 4 ) + ... + ( x 2009 + x 2010 )
= 2 + 2 + ... + 2 ( 1005 số hạng)
⇒ x 1 + x 2 + x 3 + ... + x 2009 + x 2010 = 2010
Mà x 1 + x 2 + x 3 + ... + x 2011 = 0
Nên 2010 + x 2011 = 0. Vậy x 2011 = -2010
x1;x2;x3;x4;x5=-1 hoặc 1
=>x1.x2;x2.x3;x3.x4;x4.x5;x5.x1 bằng 1 hoặc -1
giả sử x1.x2+x2.x3+x3.x4+x4.x5+x5.x1=0
=>số các số hạng 1 và -1 bằng nhau
=>số các số hạng chia hết cho 2
=>5 chia hết cho 2(có 5 số hạng) Vô lí
=>x1.x2+x2.x3+x3.x4+x4.x5+x5.x1\(\ne0\)
=>đpcm
từ \(x_1\)+ \(x_2\) +........+ \(x_{2007}\)= 0
==>( x1 + x2) + ( x3+x4) +.......+ ( x2005 + x2006) + x2007= 0
==> 1+ 1 +.....+ 1 + x1007 = 0 ( 1003 số 1)
=> 1003 + x2007 = 0
=> x2007 = 0 - 1003
=> x2007 = -1003
vì x2007 + x1= 1 ==> -1003+ x1=1==> x1 = 1- 1003= -1002
Vậy x1 = -1002 ( tick nha)